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Abstract

This dissertation is about a particular style of research. The philosophy of this style is that in or-
der to scientifically understand deep learning, it is fruitful to investigate what happens when neural
networks are trained on simple, mathematically well-defined tasks. Even though the training data
is simple, the training algorithm can end up producing rich, unexpected results; and understand-
ing these results can shed light on fundamental mysteries of high relevance to contemporary deep
learning.
First, we situate this methodological approach in a broader scientific context, discussing and

systematizing the role ofmodel systems in science and in the science of deep learning in particular.
We then present five intensive case studies, each of which uses a particular combinatorial task as a
lens through which to demystify puzzles of deep learning.
The combinatorial tasks employed are sparse Boolean functions, sparse parities, learning finite

group operations, performing modular addition, and learningMarkov chains in-context. Topics of
explanatory interest include the inductive biases of the transformer architecture, the phenomenon
of emergent capabilities during training, the nuances of deep learning in the presence of statistical-
computational gaps, the tradeoffs between different resources of training, the effect of network
width on optimization, the relationship between symmetries in training data and harmonic struc-
ture in trained networks, the origins of the mechanisms of in-context learning in transformers, and
the influence of spurious solutions on optimization.
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1
Introduction

1.1 A Parable

Once, seven sages, voyaging together in unfamiliar lands, came across a strange object.

The first sage said, “This appears to be a sort of brain. See how it processes information using

billions of neurons connected by synapses.”

The second sage shook her head. “This is an engineered machine if I ever saw one. ”

1



The third sage said, “Not just any engineered machine—a general-purpose computer. These

neurons are gates that combine to form circuits, perhaps even Turing machines. To understand the

computer, understand the algorithms it implements.”

The fourth sage would have none of it. “All this talk of what is—the important thing is how

it came to be. What we have before us is a snapshot of a dynamical system, like an ecosystem or a

hurricane.”

The fifth sage sat in awestruck contemplation. “What we see here is a mere shadow of Infinity.

It is but a small part, a meager approximation, of a limitless, elegant Form. It is that infinite Form

which we ought to study.”

The sixth sage looked around at the others. “Do you not see? The mechanism is a mirror for the

data that it consumes. You focus on the mechanism itself, when what matters most is the data.”

The seventh sage, who was considered by some to be the wisest, said, “This thing is capable of

working wonders. It is meant to be used and perhaps tinkered with. But to attempt to understand it

is a fool’s errand.” He turned aside and continued trudging along the path.

1.2 What Kind of Science?

Deep learning, as an engineering discipline, has a fairly unified paradigm right now. Its central con-

cept is the standardized benchmark, and its default methodology is twofold:

1. Scale up the resources of training as much as possible, with the optimal balance of these re-

sources guided by empirical scaling laws (Kaplan et al., 2020; Hoffmann et al., 2022)

2. Incrementally improve the Pareto frontier of performance in terms of resources by a process

of community-wide tinkering. Innumerable variations on training and inference pipelines

are empirically tested by researchers, and those which lead to benchmark gains are widely

adopted.
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The paradigm has shifted over the past decade—the focus on scaling laws has only become dom-

inant with the rise of large language models (LLMs) over the past several years. And it will change

in the future—for instance, major benchmarks for LLMs are becoming increasingly expansive and

complicated (Srivastava et al., 2022; Liang et al., 2023), and are increasingly being supplanted by

direct human or LLM evaluation (Zheng et al., 2024).

Meanwhile, the science of deep learning is still pre-paradigmatic and fragmented. By the science

of deep learning we mean the study of artificial neural networks (henceforth simply neural networks

ormodels), often centered around the goal of explaining unexplained phenomena that appear dur-

ing the practice of deep learning. This overlaps with, but is distinct from, employing aspects of the

scientific method in order to engineer better models. The immediate goal is not performance, but

understanding.*

As the parable illustrates, there are many ways of looking at a neural network. The perspective,

methodological toolkit, and modes of inquiry of a computer scientist can be dramatically different

from those of a statistician, or a neuroscientist, or a physicist, or a linguist, or a psychologist. Be-

cause the science of deep learning is defined by its subject (artificial neural networks trained with

iterative optimization algorithms) rather than its methodology, the viewpoints of each of these fields

and various others can be simultaneously relevant. This extends to subfields as well: optimization,

natural language processing, computational learning theory, high-dimensional statistics, control

theory, statistical mechanics, etc. all have something to bring to the table.

Situated at the nexus of these disparate disciplines, the science of deep learning is emerging as a

discipline in its own right. It liberally incorporates approaches from its predecessors. Of particular

importance are motifs of scientific inquiry which can be found across many of the established areas.

The focus of this dissertation is one such motif: themodel system. Examples include economic

*Whether understanding is pursued as a means towards more performant models, or models that are
better for humanity, or is thought of as a terminal goal, can influence which research questions are perceived
as most compelling.
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models, cell cultures, model organisms such as C. elegans and lab mice, particle accelerators, the Ising

model (Baxter, 2016), agent-based models (Gilbert, 2019), and Turing machines. A model system is

a means to an end. Each of these settings is the object of intense scientific study …for the purpose of

understanding other (more “realistic”) settings, not the model system itself.

Why would scientists spend so much time studying one system when they really care about an-

other? In order for this to be worth it, a model system need to be exceptionally fertile ground for

producing scientific insights. At the same time, it needs to be sufficiently reflective of settings of in-

terest in important aspects, so that the insights learned from the model system transfer. In short, a

model system needs to satisfy two desiderata: scientific productivity and transferability.*

Productivity

• Can experiments on the model system be run efficiently and cheaply?

• How amenable is it to mathematical analysis?

• Is the system particularly transparent? The nematode C. elegans is literally an optically trans-

parent organism, which enables scientists to easily make observations of the worm that

would otherwise be far more difficult (Corsi et al., 2015). Other model systems may be more

metaphorically transparent to observation and explanation.

• Is the system controllable and extensible? Are there (figurative) knobs that can be tuned to

change the nature of the setting?

Transferability

• Does the model system share important features with real-life settings of interest, such that

insights from the former transfer to the latter? This doesn’t necessarily require that the high-

*See Gabaix & Laibson (2008) for a more fine-grained list of desiderata for the case of economic models.
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level behavior of the settings is similar–it could alternatively be the case that lower-level as-

pects of the settings are shared. Sometimes, unrepresentative “extreme” cases (e.g. particle

accelerators) are more conducive to uncovering shared underlying mechanisms.

• Can investigations on the model system be relevant for a wide spectrum of real-life settings?

This can be achieved through extensibility, the fourth bullet point above.

Regarding the last bullet point—an alternative approach is to devise or discover new model sys-

tems for every phenomenon of interest. This approach can be useful, providing an otherwise impos-

sible to achieve level of fit between model system and phenomenon. The physiologist August Krogh

famously stated (in what has come to be known as Krogh’s principle) that “for a large number of

problems there will be some animal of choice, or a few such animals, on which it can be most con-

veniently studied” (Krebs, 1975). But there are advantages to employing standardized model organ-

isms. Standardization enables the use of off-the-shelf protocols and analysis tools; it facilitates more

efficient scientific communication if the setting is already understood by all parties; and it makes it

easier to draw connections between seemingly disparate phenomena. Scientists must balance the

pros and cons of creativity and conservativism when selecting a model system for study.

1.3 Model Systems of Deep Learning

In the lecture notes of a course on neural network training dynamics, Roger Grosse advises: “the

first question to ask about any neural net phenomenon is: does it also happen for linear regression?”

(Grosse, 2022). Indeed, linear settings (both regression and classification) are highly productive

model systems of deep learning. Experiments are typically easy to run and computationally cheap;

the optimal solution can often be expressed in a closed form; the dynamics of optimization algo-

rithms can often be analytically derived; the trained model can be easily interpreted by reading off

5



the coefficients; and the data distribution can be modified in many ways to model different phe-

nomena.

Lessons from linear settings can transfer to realistic deep learning settings for a few reasons.

Firstly, a linear model is, equivalently, a neural network consisting of only a single neuron and no

activation function. It is thus a “base case” for analyses of general networks. See, for instance, the

influential paper of (Soudry et al., 2018) which proved that a linear classifier* optimized with gradi-

ent descent on linearly separable data has an implicit bias towards the maximummargin weights—

and has been followed by a series of works generalizing the findings to increasingly broad classes of

neural networks (Ji & Telgarsky, 2018; Lyu & Li, 2019; Ji & Telgarsky, 2020; Kunin et al., 2022).

At the other extreme, extremely wide neural networks of any depth, with certain (often not best

practice) scaling of initialization and learning rates, have training dynamics approaching those of a

linear model (Jacot et al., 2018; Du et al., 2018; Allen-Zhu et al., 2019; Zou et al., 2020; Chizat et al.,

2019). This “neural tangent kernel” (NTK) insight has enabled explanations for phenomena such as

scaling laws (Bordelon et al., 2020, 2024) and spectral bias (Cao et al., 2019; Tancik et al., 2020).†

But while many phenomena of deep learning are already present in linear settings (Belkin et al.,

2018), this class of model systems is fundamentally limited. Powerful linear approaches such as ker-

nel and random feature methods (Rahimi & Recht, 2007) are restricted by definition to performing

a linear map atop a collection of features that were computed from the input according to a fixed (or

random) transformation. They can fit complex functions, but only if their pre-computed features

happened to include the appropriate ones. Deep learning approaches, meanwhile, have the capacity

to adaptively discover useful features based on patterns in the data. Because of this feature learning

*Specifically, unregularized logistic regression—a.k.a. a single neuron without activation function, trained
with cross-entropy loss.

†Yet another reason for the transferability of insights from the linear setting, one emphasized by Grosse
(2022), is that the loss landscape of linear regression is quadratic, and any smooth loss landscape can be ap-
proximated locally by a quadratic function.
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or representation learning* gap, there are various tasks that can be solved by small neural networks,

but require an exponential number of features for linear methods (Yehudai & Shamir, 2019; Allen-

Zhu & Li, 2019; Malach et al., 2021). This isn’t just a difference in capabilities—feature learning

comes with richer, fundamentally nonconvex optimization dynamics. It also leads trained networks

to be much more interesting on the inside, filled with learned hierarchical circuitry (Zeiler & Fergus,

2014; Olah et al., 2020; Clark et al., 2019; Olsson et al., 2022). It is what makes a neural network a

sort of computer, not just an expensive curve fitter.

In this dissertation, we go beyond the linear, studying model systems of feature learning.

At this point, it’s worth clarifying an ambiguity. There are (at least) two sorts of model systems

of deep learning, corresponding to different parts of the learning pipeline. On the one hand, there

are model architectures; on the other, there are model tasks. (A less confusing, more alliterative

name might be “test tube tasks”).† Model architectures with advantageous scientific productivity

properties include multi-layer perceptrons (see Section 6.2 for a definition), deep linear networks

(Saxe et al., 2014), simplified transformers (i.e., with only one or two layers, or without MLPmod-

ules), variants of the transformer architecture designed with interpretability or control in mind

(Hewitt et al., 2023; Friedman et al., 2024), and linear models themselves.

Model systems of tasks are particularly useful because everything about the standard deep learn-

ing pipeline (the architecture, the training algorithm, the hyperparameters) is precisely mathemati-

cally well-defined and controlled by the user except the data, which in recent years has tended to look

more and more like “everything we can find on the Internet”.‡ The standard analytical methodol-

*What do these terms mean? There is no consensus definition; historically (which in the deep learning
community means farther back than a few years ago) they were often used synonymously with the term deep
learning itself (Bengio et al., 2013). The International Conference on Learning Representation (ICLR), for
instance, is a premier conference for deep learning research broadly.

†Another category is model systems that abstract away the optimization process itself; for instance, see
works that exhibit deep learning phenomena in the model system of nearest neighbor methods (Belkin et al.,
2019; Nakkiran & Bansal, 2020).

‡There are also the nuances of floating-point rounding and hardware, but we will not open those cans of
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ogy for dealing with data in theoretical computer science is to assume the data is worst-case*, but the

richness of deep learning tends to emerge from the structure of the data, so there is much scientific

value in considering what happens when models are trained on particular test tube tasks.

1.4 Combinatorial Tasks

Over the past few years, there has been a rising wave of new works using combinatorial tasks as test

tube tasks in order to better understand deep learning, including the works which form the basis of

this thesis and also (among others): Hupkes et al. (2020); Daniely &Malach (2020); Bhattamishra

et al. (2020a); Yao et al. (2021); Zhang et al. (2021); Power et al. (2021); Zhang et al. (2022); Xie

et al. (2022); Abbe et al. (2022a); Anil et al. (2022); Liu et al. (2022a); Nanda et al. (2023); Michaud

et al. (2023); Chughtai et al. (2023); Bietti et al. (2023); Valvoda et al. (2022); Guo et al. (2023);

Glasgow (2023); Zhou et al. (2023); Liu et al. (2024); Sanford et al. (2024); Akyürek et al. (2024).

We do not have a formal definition in mind for “combinatorial task”; we are using it as an umbrella

term for mathematically well-defined tasks of a discrete, algorithmic, and/or algebraic flavor. There

are two major reasons for the increasing prevalence of this style of research. Firstly, on the theoretical

side, there is the recognition, beginning around 2019, that many interesting phenomena stem from

feature learning, which cannot be studied using linear model systems. Secondly, there is the recent

meteoric rise of LLMs, neural networks which have remarkable capacities to fluently converse in

human languages, to write computer code, to recall knowledge, and to reason (Devlin et al., 2018;

Radford et al., 2019; Brown et al., 2020; Chowdhery et al., 2022; Petroni et al., 2019; Wei et al.,

2022). Well-specified combinatorial tasks can serve as targeted models of various aspects of language,

enabling the analysis of individual capabilities in isolation.

In this dissertation, we present several case studies in the scientific investigation of deep learning

worms.
*Though see the theory of average-case complexity (Bogdanov et al., 2006) for an alternative perspective.
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using combinatorial tasks. The particular tasks studied are:

• In Chapter 4, we study learning a Boolean function which depends on an unknown sparse

subset of the input variables. We refer to these as sparse Boolean functions, though they are

also known as juntas in the learning theory literature (Blum& Langley, 1997; Mossel et al.,

2003).

• In Chapters 5 and 6, we investigate sparse parities, the special case of sparse Boolean func-

tions where the function is the summodulo 2 of the k relevant bits. A sparse parity function

can be equivalently thought of as a monomial in the {±1} basis, or as a pure k-way interac-

tion among the relevant variables with no lower-order interaction terms.

• In Chapter 7, we consider the task of performing finite group operations. Specifically,

each input is a pair (a, b), where a, b are elements of a groupG, and the target output is ab.

Of particular interest are cyclic groups Zp, or in other words,modular addition. The sparse

parity task is again considered in this chapter.

• In Chapter 8, we focus on the task of learning a Markov chain in-context. This is a se-

quence learning task in which each sequence is sampled from a fresh unknownMarkov

chain.

The investigations in these chapters elucidate a variety of mysterious aspects of deep learning. In

the next chapter, we summarize the contributions therein.
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2
Contributions

Chapter 4: Variable Creation

This chapter is based on “Inductive Biases and Variable Creation in Self-AttentionMechanisms”

(Edelman et al., 2022), written in collaboration with Surbhi Goel, Sham Kakade, and Cyril Zhang.

The starting point is an intuition about transformers (Vaswani et al., 2017): that the self-attention

mechanism allows each layer of a transformer to select a sparse subset of its inputs, and the multi-

10



layer perceptron (MLP) enables performing an arbitrary function on this selection. We call this

process “variable creation”, whereby transformer layers learn sparse Boolean functions that can then

be used as inputs for later layers. It is a form of feature learning, and is meant to be a basic illustra-

tion of how transformers with many layers might learn rich circuits. The technical contribution are

twofold. First, we prove a first-of-its-kind statistical generalization bound for transformers in terms

of the norms of their weights, using the mathematical machinery of covering numbers. Second, we

show that a single transformer layer with small weights can express an arbitrary sparse Boolean func-

tion. Together, these results imply that empirical risk minimization (exhaustive search for the model

that achieves the lowest training error) over bounded-norm transformer layers is sufficient to achieve

essentially optimal sample efficiency for learning sparse Boolean functions.

In practice, however, we cannot perform empirical risk minimization and must train using it-

erative optimization procedures instead. Accordingly, we conclude by performing experimental

evaluations of the sample complexity of learning different sparse Boolean functions with transform-

ers trained with SGD. For functions such as sparse conjunctions, the observed sample efficiency is

consistent with our prediction. Sparse parities, on the other hand, are expected to pose severe opti-

mization difficulties. A curious empirical finding is that transformers can still learn sparse parities

if trained for sufficiently long, exhibiting a long period of trivial performance followed by a sudden

drop in error rates at the end of training.

Chapter 5: Hidden Progress

This chapter is based on “Hidden Progress in Deep Learning: SGD Learns Parities Near the Com-

putational Limit” (Barak et al., 2022), written in collaboration with Boaz Barak, Surbhi Goel, Sham

Kakade, EranMalach, and Cyril Zhang. We begin with the concluding observation from Chapter 4:

a transformer trained on the sparse parity function exhibits what appears to be a striking phase tran-
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sition (informally speaking) at some point in training, in which there is sudden progress in accuracy

out of the blue. This parallels a similar observation in Power et al. (2021) in the setting of modular

arithmetic. First, we show that this phase transition phenomenon is not unique to transformers—

standardMLPs and a variety of other simple architectures also exhibit the same behavior.

The sparse parity learning problem (with k relevant variables out of n total variables) is notori-

ous in the learning theory community. On the one hand, it is easy in a statistical sense—it can be

learned by empirical risk minimization with only k log n samples. On the other hand, it is hard in a

computational sense: it is the paradigmatic example of a problem that is hard for the statistical query

learning model (Kearns, 1998; Blum et al., 1994), and its hardness when labels are noisy is a core as-

sumption in modern cryptography (Pietrzak, 2012). Thus, sparse parity learning is an ideal model

system for exploring the role of optimization in solving problems that are statistically feasible, but

only through exhaustive search.

The main question of this chapter is: if SGD on neural networks is able to learn sparse parities

near the computational limits just mentioned (and empirically it indeed can) then what is the op-

timization process doing? Is it performing some sort of exhaustive search that eventually stumbles

upon the correct solution, precipitating the phase transition? Or is there gradual progress towards

the solution all along that is hidden when we only look at the loss and accuracy curves? Through

several empirical and theoretical lines of evidence, we demonstrate that the latter scenario is actually

true: there is hidden progress throughout that seemingly fruitless plateau. We perform an extensive

empirical investigation, which includes, among various other findings, the identification of hidden

progress measures based on the internal weights of networks which show improvements through-

out training. Theoretically, we define a notion of “Fourier gap” based on the machinery of Boolean

analysis (O’Donnell, 2014) in order to show that even a single step of SGD on a single neuron, with

a sufficiently large batch size, can lead to meaningful progress towards the solution.
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Chapter 6: Pareto Frontiers

This chapter is based on “Pareto Frontiers in Deep Feature Learning: Data, Compute, Width, and

Luck” (Edelman et al., 2024a), written in collaboration with Surbhi Goel, Sham Kakade, Eran

Malach, and Cyril Zhang. Chapter 5 focused primarily on online SGD training, where there is no

risk of overfitting to the training set. This paper explores the more complicated setting of offline

training of neural networks (in particular, MLPs) on the sparse parity task. Here, the tradeoffs are

manifold: successful learning can achieved through more training samples, more training iterations,

more neurons, or more fresh initializations. The goal of the chapter is to map out the Pareto frontier

of successful learning in terms of these resources. Empirically, we present the results of hundreds of

thousands of training runs, providing literal plots of the frontier, which reflect nuanced phenomena

such as grokking (Power et al., 2021) and sample-wise double descent (Nakkiran et al., 2021). Theo-

retically, we map the frontier by presenting a multi-resource statistical query lower bound, and a set

of upper bounds which approach this lower bound. One notable insight used for the upper bounds

is that sparsely initializing the first-layer weights can improve performance. Another is that model

width effectively serves as a form of parallelization over simultaneous optimization processes, pro-

viding theoretical justification for the lottery ticket hypothesis of Frankle & Carbin (2018). We also

perform a preliminary experimental validation of our findings on real-world tabular tasks, demon-

strating improved performance for MLPs over prior work, sometimes matching or exceeding the

performance of random forest predictors.

Chapter 7: Feature Emergence

This chapter is based on “Feature Emergence via MarginMaximization: Case Studies in Algebraic

Tasks” (Morwani et al., 2023b), written in collaboration with DepenMorwani, Costin-Andrei On-

cescu, Rosie Zhao, and Sham Kakade. It is striking that even though natural data sources often
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contain symmetries (e.g. translational symmetry in images), general-purpose architectures such

as transformers can, with sufficient training data, perform as well as specialized architectures that

explicitly enforce these symmetries (Dosovitskiy et al., 2020). Relatedly, a few recent works on al-

gebraic test tube tasks (Nanda et al., 2023; Chughtai et al., 2023) have identified instances where

symmetries in the data seem to result in emergent harmonic structure in trained networks. In this

chapter, we explain this remarkable empirical finding, in the setting of quadratic-activationMLPs

with trained to perform group operations—with a special focus on modular addition. In particular,

we prove that allmaximummargin (with respect to a certain norm) parameter settings display the

empirically observed harmonic structure. When the task is modular addition, the incoming weights

to each neuron must form a sine wave. For more general groups, these weight vectors correspond to

irreducible representations of the group. We introduce a novel duality argument in order to prove

these results on the relationship between network structure and network function.

Chapter 8: InductionHeads

This chapter is based on “The Evolution of Statistical Induction Heads: In-Context Learning

Markov Chains” (Edelman et al., 2024b), written in collaboration with Ezra Edelman, Surbhi Goel,

EranMalach, and Nikolaos Tsilivis. Transformer language models are known to be able to learn in-

context: when there are patterns in an input sequence, the transformer will tend to continue these

patterns in its next-token predictions. Elhage et al. (2021); Olsson et al. (2022) discovered the in-

duction head, a learned component of transformer language models that facilitates this in-context

learning behavior. In this chapter, we introduce a test tube task that requires only an induction

head in order to solve. The task is in-context learning ofMarkov chains (ICL-MC): each sequence in

the data distribution is sampled from a freshMarkov chain, which in turn is sampled from a prior

distribution over Markov chain transition matrices. In order to perform next-token prediction, a
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model trained on this task must infer, in-context, the transition matrix of the Markov chain; in other

words, it must learn the 2-gram statistics of the sequence. We also devise extensions of the tasks

corresponding to n-grams for n > 2. Empirically, we find that (attention-only) transformers in-

deed learn induction heads in order to solve the task. During training, they move through a series of

discrete phases: first relying on in-context 1-gram statistics, then 2-gram statistics, and so on. Each

phase corresponds to a plateau in the overall loss. Theoretically, we analyze the interplay between

the different layers of a simplified transformer-esque architecture as they follow a complex feature

learning process during training. Moreover, we provide empirical evidence that the presence of sim-

pler inadequate solutions (e.g. 1-gram statistics in the original task) slows down the learning of the

eventual correct solution, an instance of a pitfall of simplicity bias (Shah et al., 2020).
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3
Deep Learning Preliminaries

This chapter is a primer on fundamental deep learning notions which will be employed in the disser-

tation.†

Wewill primarily focus on the classic machine learning setting of supervised classification, in

which there is an input spaceX , a finite output (or label) spaceY , and a target distributionD over

†For the sake of novelty and pedantry, some definitions are presented in an idiosyncratic way. Specifically,
the definition of neural networks in terms of circuits in Section 3.1, and the notation introduced in Sec-
tion 3.2 for pre- and post-processing real-valued neural network inputs and outputs for discrete classification.
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X × Y . A classification algorithm takes as input a training set S of samples (x, y) drawn fromD,

and produces a classifier h : X → Y .* The goal is to produce a classifier that accurately predicts the

labels of new inputs from the population.

Population accuracy measures the proportion of samples from the distribution for which the

hypothesis is correct:

Pr
(x,y)∼D

[h(x) = y].

and population error is the proportion of samples for which the hypothesis is incorrect. These

quantities can be estimated by measuring empirical performance on a fresh sample fromD referred

to as a test or validation set, yielding test (or validation) error/accuracy.

3.1 Neural Networks

In deep learning, an architecture is a circuit that implements a multivariate function over the reals of

the form

f : Rdin × Rdparams → Rdout

Its input consists of two parts: an encoding of the input x, and a parameter vector θ. The elements

of θ are referred to as parameters or weights. A neural network (also referred to as simply a network or

model) is a circuit obtained by fixing the weights to a particular constant setting θ (thus computing

the function f(·; θ)).

We are using the term ‘circuit’ in the sense it is used in computational complexity theory (Arora

& Barak, 2009). A circuit is a directed acyclic† graph in which each node (gate) corresponds to an

*In much of this thesis, we will focus on the case where all the randomness inD is overX—i.e., y is a
deterministic function of x.

†Recurrent neural networks (RNNs) are often described as having cyclic information flow. However,
during training RNNs are typically unrolled into acyclic networks. In any case, we will focus on feedforward
neural networks, which are by definition acyclic.
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intermediate function. The input gates (those with in-degree zero) are labeled with input variables

or constants. The remaining gates are labeled with elementary operations from some set of allowed

operations; a node with in-degree kmust be labeled with a k-ary operation. The output of the gate

is obtained by applying the operation to its inputs; in this way, some intermediate function is in-

ductively computed at every gate. Finally, dout of the gates are labeled as output gates, and we say

that the circuit computes the function corresponding to the tuple of the functions computed at the

output gates. What elementary operation are to be allowed? One basis set of operations which suf-

fices for virtually all neural networks commonly studied and used is: addition, multiplication, and

arbitrary unary operations.* In other words, neural networks can typically be expressed as arithmetic

circuits (Shpilka et al., 2010) augmented with unary gates.†‡

In practice, the success of deep learning has been enabled by massively parallel implementations

of neural networks, permitting the serial runtime of the circuit to be drastically lower than the to-

tal number of operations. It is standard to organize arithmetic operations on individual scalars into

linear algebraic operations on massive tensors; and to apply single unary operations in bulk to all

the entries of a tensor. Thus, architectures are typically described using the language of linear alge-

bra and function composition; the above formulation in terms of arithmetic circuits is an attempt

towards generality.

*Allowing arbitrary unary gates is not restrictive enough to be reasonable. Given a countable class of
functionsF , there exists a unary gate that can be incorporated into a “universal” network with only a single
parameter that nevertheless is able to simulate arbitrary functions inF with different settings of the parame-
ter (exercise for the reader). It is not obvious what the “right” restricted class of unary gates should be.

†The definition of neural network presented here is nonstandard, but there is no consensus definition.
See the notion of “tensor programs” introduced in Yang (2019) for another attempt at a general characteriza-
tion. Yang’s definitions, which deal directly with vectors rather than scalars, have the desirable property that
there is a well-defined notion of scaling the width of a fixed architecture.

‡Baur & Strassen (1983) proved that the gradient of an arithmetic circuit’s output with respect to its in-
put can be computed in a number of arithmetic operations proportional to the number of gates in the circuit.
This fact is essentially equivalent to the fact that the gradient of a neural network’s output with respect to its
parameters can be efficiently computed for neural networks through backpropagation, which motivates the
use of first-order optimization algorithms (see Section 3.3) in deep learning.
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One classic architecture is themulti-layer perceptron (MLP), also known as the fully-connected

network. The term “perceptron” comes from the pioneering work of Rosenblatt (1958). Roseblatt’s

perceptron was originally conceived as a model system of neural processing—a “hypothetical ner-

vous system …designed to illustrate some of the fundamental properties of intelligent systems in

general, without becoming too deeply enmeshed in the special, and frequently unknown, condi-

tions which hold for particular biological organisms.” It is the forerunner of the multi-layer percep-

tron studied in this dissertation, and differs in only a few details.

As an illustrative example of MLPs and neural networks in general, we will define a two-layer

MLP (a.k.a. one-hidden layer MLP) with scalar output. The parameters of this architecture are a

matrixW ∈ Rdhidden × Rdin and a vector u ∈ Rdhidden , for some hidden dimension or width dhidden.

The full parameter vector θ is the concatenation of uwith a flattened version ofW. Hence, we have

dparams = dhidden + dhiddendin. The architecture is:

fMLP(x; (u,W)) := u⊤σ(Wx)

Here, σ is an activation function. It is defined as a univariate function over the reals; when, in the

architecture definition, we give it a vector input, we are abusing notation to indicate that it is applied

coordinate-wise—i.e.,

σ(Wx) :=
[
σ(W1

⊤x) . . . σ(Wdhidden
⊤x)
]
.

Note that without the activation function, a MLP network would be a linear map. By choosing

a nonlinear function for σ, a far richer class of functions can be represented by the architecture over

different settings of the weights. One common activation function is the ReLU (rectified linear
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unit):

σ(z) = max(z, 0).

The functions x 7→ σ((Wx)i) are called neurons, by analogy to biological neurons. In the anal-

ogy, elements of x are input stimuli which are propagated to neuron i by synapses with strengths

Wi; the neuron then “fires” with a “firing rate” (here the analogy is strained) determined by its re-

sponse function σ. In deep learning parlance, the value of σ((Wx)i) is referred to as the activation

of neuron i; and our MLP has a “hidden layer” consisting of dhidden neurons. Note that our general

definition of a neural network does not require that it is decomposable into neurons, and indeed

some architectures, such as the transformer (Vaswani et al., 2017), include components that don’t fit

neatly into the “neurons and synapses” analogy.

3.2 Classifiers fromNetworks

We now describe how a network which operates over the reals induces a discrete classifier. Given a

network with parameter vector θ, define the corresponding classifier as

h(x) := discretize(f(encode(x); θ))

where encode : X → Rdin is an optional helper function that embeds inputs into the proper

format, and discretize : Rdout → Y converts the real-valued output of the model into a discrete

label. In this dissertation, we focus on cases whereX = Sd for some finite set S and input size d.

When |S| = 2, we encode the two elements of S as scalars±1. When |S| > 2, we encode each

20



element i of S as an indicator vector (“one-hot encoding”):

ej :=


1 if j = i

0 otherwise
.

Finally, encode encodes each coordinate of x accordingly and concatenates the results. Typically, for

notational simplicity, we will elide encode and assume the inputs are already prepared in the proper

real-valued format.

Meanwhile, the method of discretizing outputs also (by convention) depends on the cardinality

of the space. If |Y| = 2, we let dout = 1, and use discretize(f(x; θ)) := sign(f(x; θ)). If |Y| > 2, we

let dout = |Y| and use discretize(f(x; θ)) := argmaxi∈Y f(x; θ)i.

3.3 Training

Neural networks are typically trained with first-order iterative optimization algorithms. By iter-

ative we mean that the learning algorithm begins with some (typically random) initial setting for

the parameters θ (an initialization) and then incrementally improves θ in a sequence of updates.

By first-order we mean that the update rule employs first-order derivatives of some loss function

ℓ : R× R→ Rwith respect to the parameters.

The loss function is meant to be a proxy for population error. Recall that the goal is to minimize

population error:

E
(x,y)∼D

[1I[h(x) 6= y]].

The issue with using first-order optimization algorithms to minimize this directly, without a loss

function, is that the discretization of the network’s outputs renders population error insensitive to
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infinitesimal changes in the parameters. So instead we try to minimize the population loss

E
(x,y)∼D

[ℓ(y, f(x; θ))]

for a judiciouly chosen ℓ. Examples of loss functions for binary classification (with Y = {±1}, but

considered as a subset ofR) include:

• Cross-entropy (logistic) loss: ℓ(y, f(x; θ)) = − log exp(yf(x;θ))
1+exp(yf(x;θ))

• Square loss: ℓ(y, f(x; θ)) = (y− f(x; θ))2

• Hinge loss: ℓ(y, f(x; θ)) = max(0, 1− yf(x; θ))

• Correlation loss: ℓ(y, f(x; θ)) = yf(x; θ)

The prototypical first-order iterative optimization algorithm is gradient descent (GD). To run

GD, sample the initial network weights θ0 from some initialization distribution. Then, for t =

0, . . . until some stopping condition is reached, perform the following update:

θt+1 = θt − ηt · ∇θ E
(x,y)∼D

[ℓ(y, f(x; θ))].

where {ηt}
T
t=1 is some learning rate (a.k.a. step size) schedule. The hyperparameters (tunable as-

pects of the algorithm specification) of vanilla gradient descent are the initialization distribution and

the learning rate schedule. The motivation for the algorithm is that we are iteratively adjusting the

weights in the direction of steepest descent of the loss.

In practice, it is more common to use stochastic gradient descent (SGD), which only requires

access to the gradient of the loss on a small sample of data points, rather than the entire population:

θt+1 = θt − ηt · ∇θ

(
1
B

B∑
i=1

ℓ(yt,i, f(xt,i; θt))

)
.
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where B is some batch size (another hyperparameter), and each {(xt,i, yt,i)}Bi=1 is a batch (a.k.a. mini-

batch) of training examples.

In online SGD, the elements of each batch are sampled i.i.d. from the full populationD. Over

the randomness of sampling, the expectation of each minibatch gradient is the population gradient.

Equivalently, we can conceptualize online SGD as iterating over consecutive chunks of b examples

from a fixed training set S (drawn i.i.d. fromD) in a single pass (or epoch). In offline SGD, we per-

formmultiple passes over S, typically shuffling S after each epoch. In offline gradient descent, every

batch is the full training set.

There are many other first-order iterative optimizers which address various shortcomings of the

simple (yet still powerful) SGD algorithm. In this dissertation, when we are dealing with the trans-

former architecture, we perform training with the Adam optimizer (Kingma & Ba, 2014), which is

currently popular for transformer training.

With any of these algorithms, there is the option of adding a function of the weights, called a

regularization term, to the empirical average of the loss function in the update rule. A common

regularization term is ‖θ‖, for some norm ‖ · ‖. The goal of regularization is typically to improve

generalization (performance on the full population, in the offline training setting) by reducing the

capacity of the learning algorithm to overfit to spurious patterns in the training sample. Note that

the solutions found by offline first-order optimization algorithms are often implicitly biased (Vardi,

2023) towards particular parts of weight space, leading to favorable generalization properties even

without explicit regularization.

23



This chapter is based on “Inductive Biases and Variable Creation in Self-

AttentionMechanisms” (Edelman et al., 2022), written in collaboration

with Surbhi Goel, Sham Kakade, and Cyril Zhang.

4
Variable Creation

Self-attention, an architectural motif designed to model long-range interactions in sequential data,

has driven numerous recent breakthroughs in natural language processing and beyond. This work

provides a theoretical analysis of the inductive biases of self-attention modules. Our focus is to rig-

orously establish which functions and long-range dependencies self-attention blocks prefer to rep-

resent. Our main result shows that bounded-norm Transformer networks “create sparse variables”:

a single self-attention head can represent a sparse function of the input sequence, with sample com-
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plexity scaling only logarithmically with the context length. To support our analysis, we present

synthetic experiments to probe the sample complexity of learning sparse Boolean functions with

Transformers.

4.1 Introduction

Self-attention mechanisms have comprised an era-defining cornerstone of deep learning in recent

years, appearing ubiquitously in empirical breakthroughs in generative sequence modeling and

unsupervised representation learning. Starting with natural language (Vaswani et al., 2017), self-

attention has enjoyed surprising empirical successes in numerous and diverse modalities of data. In

many of these settings, self-attention has supplanted traditional recurrent and convolutional archi-

tectures, which are understood to incorporate inductive biases about temporal and translational

invariances in the data. Self-attention models discard these functional forms, in favor of directly and

globally modeling long-range interactions within the input context.

The proliferation of self-attention raises a fundamental question about its inductive biases: which

functions do self-attention networks prefer to represent? Various intuitions and empirics inform the

design of these architectures, but formal statistical abstractions and analyses are missing in this

space. To this end, this work initiates an analysis of the statistical foundations of self-attention.

We identify an inductive bias for self-attention, for which we coin the term sparse variable cre-

ation: a bounded-norm self-attention head learns a sparse function (which only depends on a small

subset of input coordinates, such as a constant-fan-in gate in a Boolean circuit) of a length-T con-

text, with sample complexity scaling as log(T). The main technical novelty in this work is a covering

number-based capacity bound for attention mechanisms (including Transformer heads, as well as

related and future architectures), implying norm-based generalization bounds. This is accompanied

by a matching representational result, showing that bounded-norm self-attention heads are indeed
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capable of representing s-sparse functions with weight norms 2O(s) (or poly(s), for symmetric sparse

functions). This provides a theoretical account for why attention models can learn long-range de-

pendencies without overfitting.

Finally, we conduct synthetic experiments to probe the sample efficiency of learning sparse in-

teractions with self-attention. We train Transformer models to identify sparse Boolean functions

with randomly chosen indices, and corroborate the sample complexity scaling law predicted by the

theory. A variant of this experiment (with i.i.d. samples) reveals a computationalmystery, beyond

the scope of our current statistical analysis: we find that Transformers can successfully learn the

“hardest” (in the sense of SQ-dimension) s-sparse functions: the XOR (parity) functions.

4.1.1 Related work

The direct precursors to modern self-attention architectures were recurrent and convolutional net-

works augmented with attention mechanisms (Bahdanau et al., 2014; Luong et al., 2015; Xu et al.,

2015). Landmark work by Vaswani et al. (2017) demonstrated significantly improvements in ma-

chine translation via a pure self-attention architecture; autoregressive language models (Liu et al.,

2018; Radford et al., 2018, 2019; Brown et al., 2020), and self-supervised representation learning via

masked language modeling (Devlin et al., 2018) followed shortly.

Norm-based capacity bounds for neural nets. There is a vast body of literature dedi-

cated to establishing statistical guarantees for neural networks, including VC-dimension and shatter-

ing bounds (dating back to Anthony & Bartlett (1999)). In recent years, classical norm-based gen-

eralization bounds have been established for various architectures (Bartlett et al., 2017; Neyshabur

et al., 2015, 2017; Golowich et al., 2018; Long & Sedghi, 2019; Chen et al., 2019) using covering-

based arguments. Jiang et al. (2019) provide an extensive empirical study of how well these bounds

predict generalization in practice. Our work complements these results by establishing the first
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norm-based capacity analysis for attention models. Our main results rely on a novel reduction to

the ℓ∞ covering number bound for linear function classes given by Zhang (2002).

Other theoretical lenses on attention. Our work complements various existing theo-

retical perspectives on attention-based models. Vuckovic et al. (2020) formulate a dynamical system

abstraction of attention layers, arriving at similar Lipschitz constant calculations to ours (which are

coarser-grained, since they focus on contractivity and stability rather than finite-sample statistical

guarantees). Zhang et al. (2019); Snell et al. (2021) study idealizations of the optimization problem

of learning self-attention heads. Wei et al. (2021) propose a definition of statistically meaningful

approximation of function classes that ties statistical learnability with expressivity, and show that

Boolean circuits can be SM-approximated by Transformers with a sample complexity bound that

depends mildly on circuit depth (rather than context size), using a margin amplification procedure.

Kim et al. (2021) show that standard dot-product attention is not Lipschitz for an unbounded in-

put domain, whereas our paper shows that norm-based generalization bounds are attainable with a

‖·‖2,∞-bounded input domain.

See Appendix A.4 for a broader survey of the literature on attention and self-attention networks.

4.2 Background and notation

Throughout this paper, the input X := [x1x2 . . . xT]⊤ ∈ RT×d to an attention module (a.k.a. the

context) will be a length-T sequence of embeddings xt ∈ Rd;m refers to the sample size (i.e. number

of length-T sequences in a dataset). ‖ · ‖2 denotes the spectral norm for matrices, and ‖ · ‖p,q denotes

the (p, q)matrix norm where the p-norm is over columns and q-norm over rows. For vectors, ‖ · ‖p

denotes the ℓp norm; we drop the subscript for the ℓ2 norm. B is generally used to quantify bounds

on norms of matrices and L for Lipschitz constants. Δn−1 denotes the simplex in dimension n, that

is, Δn−1 := {x ∈ Rn : x ≥ 0, ‖x‖1 = 1}.
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Covering numbers. Our main technical contribution is a generalization bound arising from

carefully counting the number of functions representable by a Transformer. The main technical

ingredient is the notion of a covering number. We will use the following definition of∞-norm

covering number adapted from Zhang (2002):

Definition 4.1 (Covering number). For a given class of vector-valued functionsF , the covering

numberN∞(F ; ε; {z(i)}mi=1; ‖ · ‖) is the smallest size of a collection (a cover) C ⊂ F such that

∀f ∈ F , ∃̂f ∈ C satisfying

max
i
‖f(z(i))− f̂(z(i))‖ ≤ ε.

Further, define

N∞(F , ε,m, ‖ · ‖) = sup
z(1)...z(m)

N∞(F ; ε; z(1), . . . , z(m), ‖ · ‖).

IfF is real-valued (instead of vector-valued), we drop the norm from the notation. Furthermore

for functions parameterized by a set of parameters Θ, we exploit the notation to replaceF by Θ.

Recall that for the class of linear functions,

Flin = {x 7→ w · x : w ∈ Rd, ‖w‖2 ≤ BW},

we have the covering number bound (Zhang, 2002) of

N∞(F ; ε; {x(i)}mi=1) ≤ O
(
B2XB2W
ε2

· log
(
BXBWm

ε

))
,

where ‖x(i)‖ ≤ BX for i ∈ [m]. Importantly, note that the covering number has a mild dependence

onm, only logarithmic; this logarithmic dependence onmwill be helpful when we turn our analysis

to the capacity of attention mechanisms.
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Figure 4.1: Diagrams of attention modules ftf‐head, ftf‐layer, ftf‐scalar described in Section 4.3: alignment scores (grey
edges) determine normalized attention weights (blue), which are used to mix the inputs x1:T. Left: Attention with a
general context z. Center: Self‐attention layer, where both the input and the context come from x1:T. Right: Auxiliary
[CLS] token to extract a single scalar from a self‐attention layer, providing a real‐valued function class for classification
or regression tasks.

Generalization bounds. This work focuses on providing log-covering number bounds,

which imply uniform generalization bounds via standard arguments. The following lemma relates

these quantities; we refer the reader to Appendix A.1.1 for a formal review.

Lemma 4.2 (Generalization bound via covering number; informal). SupposeF is a class of bounded

functions, and logN∞(F ; ε; x(1), . . . , x(m)) ≤ CF/ε
2 for all x(1), . . . , x(m) ∈ Xm. Then for any

δ > 0, with probability at least 1 − δ, simultaneously for all f ∈ F , the generalization error εgen

satisfies

εgen(f) ≤ Õ

(√
CF
m

+

√
log(1/δ)

m

)
.

4.3 Abstractions of (self-)attention

The precise definition of attention is less straightforward to define than for architectural compo-

nents such as convolutions and residual connections. In this section, guided by the manifestations

of attention discussed in (Luong et al., 2015), we present some notation and definitions which gen-

eralize attention mechanisms commonly seen in practice, including the Transformer. Intuitively,

these definitions encompass neural network layers which induce context-dependent representation

bottlenecks. Subsequently, we show how to represent the Transformer (the predominant attention-
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based architecture) as a special case of this formulation.

4.3.1 Attention

Intuitively, we would like to capture the notion that an output variable selects (“attends to”) a part

of the input sequence on which it will depend, based on a learned function of global interactions

(see Figure 4.1, left). To this end, we define an attention head as a function which maps a length-

T input sequence (e.g. the tokens in a sentence, pixels in an image, or intermediate activations in a

deep Transformer network) and an additional context z ∈ Z to an output y ∈ Y . In this work, we

will exclusively considerX ,Y,Z to beRd. An attention head uses z to select the input coordinates

in X to which the output ywill “attend”, formalized below:

Definition 4.3 (Attention head). An attention head is a function f : X → Y , specified by an

alignment score function Score : X × Z → R parameterized by θs ∈ Θs, normalization function

Norm : RT → ΔT−1, and position-wise maps φin : X → V , φout : V → Y parameterized by

θin ∈ Θin and θout ∈ Θout. The output of an attention head on input X ∈ X T, z ∈ Z is

y = φout
( T∑

t=1

[
Norm

(
Score(x1, z; θs), . . . , Score(xT, z; θs)

)]
t
φin(xt; θin); θout

)
= φout

(
φin(X; θin)

⊤Norm
(
Score(x1, z; θs), . . . , Score(xT, z; θs)

)
; θout

)

where φin(X; θ) = [φin(x1; θ) . . . φin(xT; θ)]
⊤ denotes the row-wise application of φin.

The above definition corresponds to the leftmost diagram in Figure 4.1. Here, V is a vector

space of input representations “mixed” by the normalized alignment scores; in this work, we will

set V = Rk. A function class of attention heads is induced by specifying parameter classes for

{Θs,Θin,Θout}.
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4.3.2 Self-attention and Transformers

A self-attention head is a special case of an attention head, in which the context z comes from one

of the inputs xt themselves: pairwise interactions among the elements in X are used to select the

elements of X on which f depends. In this case, we use “input” and “context” interchangeably to

refer to X. For example, a self-attention head which uses z := xt is defined by

y = φout
(
φin(X; θin)

⊤Norm(Score(X, xt; θs)); θout
)
.

We now define the Transformer self-attention architecture as a special case of the above. Since a

Transformer layer has shared parameters between multiple output heads, we will define all T out-

puts of the layer at once.

Definition 4.4 (Transformer layer). ATransformer layer is a collection of T attention heads (whose

outputs are y1, . . . , yT) with the following shared parameters:

• The context for head τ is xτ, and the alignment score function is quadratic:

Score(x, xτ; {WQ,WK}) := x⊤τ WQW⊤
K x, WQ,WK ∈ Rd×k.

• φin is linear:

φin(x;WV) := W⊤
V x, WV ∈ Rd×k.

• φout is a linear function, composed with an Lσ-Lipschitz activation function σ : R → R such

that σ(0) = 0:

φout(x;WC) := W⊤
C σ(x), WC ∈ Rk×d.
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• The normalization function is the T-dimensional softmax:

Norm(x) := softmax (x) =
exp (x)

1⊤ exp (x)
.

Defining Y := [y1y2 . . . yT]⊤ ∈ RT×d and [RowSoftmax(M)]t,: := softmax(Mt,:), we have

Y = σ
(
RowSoftmax

(
XWQ(XWK)

⊤
)
XWV

)
WC.

Functions from the above class of Transformer layers mapRT×d to itself, and can thus be itera-

tively composed. We discuss remaining discrepancies between Definition 4.4 and real Transformers

(positional embeddings, position-wise feedforward networks, layer normalization, parallel heads,

residual connections) in Section 4.4.3 and the appendix.

Extracting scalar outputs from a Transformer. Finally, we establish notation for

a canonical way to extract a scalar prediction from the final layer of a Transformer. For a context of

size T, a Transformer layer with T+1 inputs is constructed, with a special index [CLS].* The input at

this position is a vector x[CLS] ∈ Rd (which can be fixed or trainable); the output is a linear function

w⊤y[CLS], for a trainable parameter w ∈ Rd. This defines a class of functions mappingRT×d → R,

parameterized by a Transformer layer’s parameters and w, which we call the class of scalar-output

Transformers. This is the setup used by the classification modules in BERT (Devlin et al., 2018) and

all of its derivatives.

*[CLS]stands for “class”, as in “treat the output at this position as the classifier’s prediction”.

32



4.4 Capacity bounds for attention modules

In this section, we present covering number-based capacity bounds for generic attention heads and

Transformers, along with overviews of their proofs. Section 4.4.1 bounds the capacity of a gen-

eral attention head. Section 4.4.2 instantiates this bound for the case of a single Transformer self-

attention head. Section 4.4.3 generalizes this bound for full depth-LTransformer networks. The

sample complexity guarantees for Transformers scale only logarithmically in the context length T,

providing rigorous grounding for the intuition that the architecture’s inductive bias selects sparse

functions of the context.

Note: Throughout this section, assume that ‖xt‖2 ≤ BX for all t ∈ [T] (i.e. ‖X‖2,∞ ≤ BX).

Note that this allows for the Frobenius norm ‖X‖F to scale with
√
T. The key challenge through-

out our analysis is to avoid incurring factors of norms which take a sum over the t dimension, by

constructing covers appropriately.

4.4.1 Capacity of a general attention head

Recall that the attention head architecture can be represented as a function fhead : RT×d × Rd →

Rd parameterized by θs, θin, θout as

fhead(X, z; θs, θin, θout) = φout
(
φin(X; θin)

⊤Norm(Score(X, z; θs)); θout
)
.

Denote the corresponding function class by

Fhead := {(X, z) 7→ fhead(X, z; θs, θin, θout) : θs ∈ Θs, θin ∈ Θin, θout ∈ Θout}

To convert the vector-valued function class to a scalar output function class, we defineFscalar :=
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{(X, z) 7→ w⊤f(X, z) : f ∈ Fhead,w ∈ Rd, ‖w‖ ≤ Bw}.

For simplicity of presentation, we will focus only on the attention head, and assume that φout

and w are fixed. We handle the general case of trainable downstream layers in the analysis of multi-

layer Transformers in Appendix A.1.7.

Assumption 4.5. Wemake the following assumptions:

1. φout is Lout-Lipschitz in the ℓ2-norm, that is,

∀a, b ∈ Rk : ‖φout(a)− φout(b)‖ ≤ Lout‖a− b‖.

2. φin is Bin-bounded in ℓ2-norm, that is,

∀a ∈ Rd, θin ∈ Θin : ‖φin(a; θin)‖ ≤ Bin‖a‖.

3. Norm is continuously differentiable and its Jacobian satisfies

∀θ ∈ RT, ‖JNorm(θ)‖1,1 ≤ CNorm.

Note that softmax (the most commonly usedNorm function) satisfies the Jacobian assumption

with Csoftmax = 2 (see Corollary A.7).

We prove the following bound on the covering number ofFhead form samples,

Theorem 4.6 (Attention head capacity). Under Assumptions 4.5, ∀α ∈ [0, 1] the covering number of

Fhead satisfies

logN∞

(
Fhead; ε;

{
(X(i), z(i))

}m

i=1
; ‖ · ‖2

)
≤

logN∞

(
FScore;

αε
CNormLoutBinBX

; {(x(i)t , z(i))}i∈[m]
t∈[T]

)
+ logN∞

(
Fin;

(1− α)ε
Lout

; {x(i)t }
i∈[m]
t∈[T] ; ‖ · ‖2

)
,
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whereFScore = {(x, z) 7→ Score(x, z; θs) : θs ∈ Θs}, andFin = {x 7→ φin(x; θin) : θin ∈ Θin}.

Note that the bound is in terms of theN∞ covering number of functions that dependent on

dimensions d or k and not T. The effect of T only shows up in the number of samples to cover.

Crucially, for some function classes (e.g. linear functions (Zhang, 2002)),N∞ scales only logarith-

mically with the number of samples. This is exactly what allows us to obtain our logT capacity

bounds.

Since w is fixed, an ε-covering ofFhead directly gives us an εBw-covering forFscalar, implying

logN∞

(
Fscalar; ε;

{
(X(i), z(i))

}m

i=1

)
≤ logN∞

(
Fhead; ε/Bw;

{
(X(i), z(i))

}m

i=1
, ‖ · ‖2

)
.

Proof overview. In order to prove the bound, we first show a Lipschitzness property of fhead.

This property allows us to construct a cover by using covers forFScore andFin.

Lemma 4.7 (ℓ∞-Lipschitzness of fhead). For any θs, θ̂s ∈ Θs, θin, θ̂in ∈ Θin; for all X ∈ RT×d, such

that
∥∥X⊤∥∥

2,∞ ≤ BX,

∥∥∥fhead(X, z; θs, θin,w)− fhead(X, z; θ̂s, θ̂in,w)
∥∥∥ ≤

CNormLoutBinBX
∥∥∥Score(X, z; θs)− Score(X, z; θ̂s)

∥∥∥
∞

+ Lout
∥∥∥φin(X; θin)− φin(X; θ̂in)

∥∥∥
2,∞

.

The most crucial aspect of this proof is to avoid a spurious T dependence when accounting for

the attention mechanism. The key observation here is that the attention part of the network is com-

puted usingNorm, whose Jacobian norm is bounded. This allows us to use the mean-value theorem

to move to the maximum (ℓ∞) error over T tokens instead of sum (ℓ1), which could potentially

incur a T factor. Furthermore, this allows us to combine all samples and tokens and construct an

ℓ∞-cover directly formT samples.
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4.4.2 Capacity of a Transformer head

Let us now look at the case of a Transformer self-attention head and instantiate the covering bound.

For ease of presentation and to focus on the self-attention part, we collapseWQW⊤
K to a single ma-

trix, set k = d and remove the linear layerWC*. Then the Transformer self-attention head (for any

fixed τ ∈ [T]) can be described as

ftf-head(X;WV,WQK) := σ
(
W⊤

VX⊤softmax
(
XW⊤

QKxτ
))

which is obtained from the general formulation by setting the context to be xτ, Score(X, xτ;WQK) =

XW⊤
QKxτ,Norm = softmax and φout = σ.

Because the number of parameters in a Transformer self-attention head isO(d2), with no depen-

dence on T, one might presume by simple parameter counting that the capacity of the class of these

heads does not grow as the context length T grows. But capacity is not solely governed by the num-

ber of parameters—for example, the class {x ∈ R 7→ sign(sin(αx))}α∈R has a single parameter but

infinite VC-dimension. One might still hope to prove, for the special case of Transformer heads, a

T-independent upper bound on the VC-dimension (or rather, its analog for real-valued functions,

the pseudo-dimension). We observe that, in fact, the pseudo-dimension of this class does grow with

T.

Proposition 4.8. When the embedding dimension is d = 3, the class

Ftf-head-unbounded := {X 7→ ftf-head(X;WV,WQK) : WV,WQK ∈ Rd×d}

of Transformer self-attention heads with unbounded norm has pseudo-dimension≥ blogTc.

The proofs for this subsection can be found in Appendix A.1.

*See Appendix A.1.7 for an analysis of general deep Transformer models.
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Let us now define the function class of self-attention heads with bounded weight norms:

Ftf-head := {X 7→ ftf-head(X;WV,WQK) : ‖WV‖2,1 ≤ B2,1V , ‖WV‖ ≤ BV, ‖W⊤
QK‖2,1 ≤ B2,1QK}.

SinceWV,WQK have dimensions dependent on d and k, bounding their norms does not hide a T

dependence. As before, to convert this vector-valued function class to a scalar output function class,

we define

Ftf-scalar := {X 7→ w⊤f(X) : f ∈ Ftf-head,w ∈ Rd, ‖w‖ ≤ Bw}.

We obtain the following bound on the covering number ofFtf-head as a corollary of Theo-

rem 4.6:

Corollary 4.9. For any ε > 0 and X(1), . . . ,X(m) ∈ RT×d such that
∥∥∥X(i)⊤

∥∥∥
2,∞
≤ BX for all

i ∈ [m], the covering number ofFtf-head satisfies

logN∞(Ftf-head; ε;X(1), . . . ,X(m), ‖ · ‖2) ≲ (LσBX)2 ·

(
(B2,1V )

2
3 + (B2,1QKBV)

2
3

)3
ε2

· log(mT)

Here≲ hides logarithmic dependencies on quantities besides m and T.

Proof overview. The above result follows from bounding the covering numbers of

FQK := {z 7→ x⊤τ WQKz : ‖W⊤
QK‖2,1 ≤ B2,1QK}, and

FV := {z→W⊤
V z : ‖WV‖2,1 ≤ B2,1V , ‖WV‖ ≤ BV}.

Note that |x⊤τ WQKz− x⊤τ WQKẑ| ≤ ‖WQKz−WQKẑ‖ since ‖xτ‖ ≤ 1, so the covering number

ofFQK is at most the covering number of the class of functions of the form z 7→WQKz. Therefore,
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a covering number bound for the vector-valued linear function class suffices to handle both covering

numbers:

Lemma 4.10. LetW : {W ∈ Rd1×d2 : ‖W⊤‖2,1 ≤ BW}, and consider the function classF : {x 7→

Wx : W ∈ W}. For any ε > 0 and x(1), . . . , x(N) ∈ Rd1 satisfying ∀i ∈ [N],
∥∥x(i)∥∥ ≤ BX,

logN∞(F ; ε; x(1), . . . , x(N); ‖ · ‖2) ≲
(BXBW)2

ε2
log(d1N).

Note that this bound only depends logarithmically on the context length, as desired. The proof

can be found in Appendix A.1.

Finally, our analysis is compatible with the following additional components:

Positional embeddings. In practice, the permutation-invariant symmetry of a Transformer

network is broken by adding a positional embeddingmatrix P ∈ RT×d to the input X at the first

layer. In practice, the embedding matrix is often fixed (not trainable). Our results extend to this

setting in a straightforward way; see Appendix A.1.5. If these matrices are to be trained from a suf-

ficiently large class (say, ‖P‖2,∞ ≤ 1), the dependence of the log-covering number on T could

become linear.

Residual connections. Including residual connections (e.g. redefining ftf-head(X) as xt +

ftf-head(X) for some index t ∈ [T]) simply increases the Lipschitz constant of each layer (w.r.t. the

input) by at most 1. As long as BV = Ω(1), this only changes our covering number bounds by a

constant factor.

Multi-head self-attention. In almost all applications of Transformers, multiple parallel self-

attention heads are used, and their outputs aggregated, to allow for a richer representation. Our

analysis directly extends to this setting; see Appendix A.1.6 for details. When a single attention
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head is replaced with the sum ofH parallel heads, the log-covering number scales up by a factor of

poly(H).

Layer normalization. State-of-the-art Transformer networks are trained with layer normal-

ization modules (Ba et al., 2016), which is generally understood to aid optimization. We keep a vari-

ant of layer normalization in the covering number analysis– it proves to be useful in the analysis of

full attention blocks (see Appendix A.1.7), as it keeps the norm of the embedding of each token

bounded. Removing these layers would lead to a worse dependence on the spectral norm of the

matrices.

4.4.3 Capacity bounds for multi-layer Transformers

In this section, we will extend our results for L-layer Transformer blocks. Denote the weights of

layer i byW(i) :=
{
W(i)

Q ,W(i)
K ,W(i)

V ,W(i)
C

}
. Further denote the set of weights up to layer i by

W1:i = (W(1), . . . ,Wi−1). Denote the input representation of layer i by g(i)tf-block(X;W
1:i). We

inductively define g(i)tf-block : R
T×d → RT×d starting with g(1)tf-block(X;W

1:1) = X (the input):

g(i+1)tf-block
(
X;W1:i+1) := Πnorm

(
σ
(
Πnorm

(
f
(
g(i)tf-block

(
X;W1:i) ;W(i)

)))
W(i)

C

)
,

with f
(
Z; {WQ,WK,WV, ·}

)
:= RowSoftmax

(
ZWQ (ZWK)

⊤
)
ZWV,

where Πnorm denotes layer normalization* applied to each row. We use a slightly modified version

of LayerNorm where instead of normalizing to norm 1, we project it to the unit ball. Let the class of

*Layer normalization allows for the norms of the outputs of each token in each layer to remain bounded
by 1. Note that the norm of the entire input can still have a dependence on T. Our results would go through
with a worse dependence on the spectral norms if we were to remove layer norm.
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depth-L transformer blocks be

F (L)
tf-block :=

{
X→ g(L+1)tf-block(X;W

1:L+1) : ∀ i ∈ [L],∥∥∥W(i)
V

∥∥∥
2
,

∥∥∥∥W(i)
K W(i)

Q
⊤
∥∥∥∥
2
,
∥∥∥W(i)

C

∥∥∥
2
≤ C2,∥∥∥W(i)

V

∥∥∥
2,1

,

∥∥∥∥W(i)
K

⊤
W(i)

Q

∥∥∥∥
2,1

,
∥∥∥W(i)

C

∥∥∥
2,1
≤ C2,1

}
.

To obtain a final scalar output, we use a linear function of the [CLS] output:

gtf-scalar(X;W1:L+1,w) = w⊤ [g (X;W1:L+1)]
[CLS],:

.

Let the scalar output function class beF (L)
tf-scalar := {X → w⊤f(X)[CLS] : f ∈ F (L)

tf-block,w ∈

Rd, ‖w‖ ≤ Bw}.

Theorem 4.11 (Theorem A.17 (simplified)). Suppose ∀i ∈ [m],
∥∥X(i)

∥∥
2,∞ ≤ BX, then we have

logN∞(F (L)
tf-block; ε;X

(1), . . . ,X(m)) ≲ (C2Lσ)
O(L) ·

B2XB2wC22,1
ε2

· log(dmT).

Note that the dependence on d and T is only logarithmic even for deeper networks. The depen-

dence on (2, 1)-norms of the weight matrices is quadratic. As long as the spectral norms of the ma-

trices are bounded by 1 and σ is 1-Lipschitz (which holds for sigmoids and ReLUs), the exponential

dependence on L can be avoided.

4.5 Attention approximates sparse functions

The results in Section 4.4 show that function classes bottlenecked by self-attention mechanisms

have “small” statistical capacity in terms of the context size. In this section, we answer the converse
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question: which functions of interest are in these classes? We show that Transformers are able to repre-

sent sparse interactions in the context with bounded weight norms, and can thus learn them sample-

efficiently.

Consider the class of Boolean functions f : {0, 1}T → Rwhich are s-sparse: they only depend

on s � T of their inputs. We will construct mappings from such functions to parameters of a self-

attention head ftf-head composed with a feedforward network fmlp; note that ftf-head ◦ fmlp is the

standard Transformer block. Intuitively, ftf-head is constructed to “keep” the correct s-dimensional

subset of inputs and “forget” the rest, while fmlp “memorizes” the values of f on these s inputs, using

2O(s) parameters.

Setup. We consider the classes of Boolean functions f : {0, 1}T → R representable by bounded-

norm scalar-output Transformer heads ftf-scalar : RT×d → R. To do this, we must first fix a map-

ping from {0, 1}T toRT×d; we discuss several natural choices in Appendix A.2.1. The simplest of

these uses a sum of token and positional embeddings X(b)t,: := ebt + vt, for a set of approximately

orthogonal unit vectors {e0, e1} ∪ {v1, . . . , vT} of dimension d = Θ(logT). After choosing a

mapping X(b), the setup of the representation problem is as follows: given f(b), find Transformer

weights θtf-head and feedforward network weights θmlp such that

ftf+mlp(X(b); θtf-head, θmlp) := fmlp (ftf-head(X(b); θtf-head); θmlp) ≈ f(b), ∀b ∈ {0, 1}T.

Main representational results. For any size-s subset of indices I ⊆ [T], we show that

Transformer blocks can represent all I-sparse Boolean functions, whose values only depend on the

inputs at the coordinates in I . We give informal statements of these approximation results below,

and present the precise statements in Appendix A.2.2.

Proposition 4.12 (Sparse variable creation via Transformers; informal). Under any of the input
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mappings X(b), we have the following guarantees:

• ftf-scalar can approximate a particular monotone symmetric s-sparse Boolean function, with norms∥∥WQ
∥∥
F ≤ O (log(Ts)) ; ‖WK‖F , ‖WV‖F , ‖WC‖F ≤ O(s).

• ftf+mlp can exactly represent symmetric s-sparse functions, with the same Transformer weight norms

as above; the feedforward network weights satisfy ‖W1‖F , ‖W2‖F , ‖w‖F ≤ O(poly(s)).

• ftf+mlp can exactly represent general s-sparse functions, with the same Transformer weight norms as

above; the feedforward network weights satisfy ‖W1‖F , ‖W2‖F , ‖w‖F ≤ O(2s · poly(s)).

These results and the capacity bounds from Section 4.4 are simultaneously meaningful in the

regime of s� logT. An appealing interpretation for the s = 2 case is that a single Transformer head

can learn a single logical gate (i.e. AND,OR,NAND, ...) in a Boolean circuit, with d and weight

norms scaling as logT.

Proof ideas. Each construction uses the same basic idea: selectWQ,WK so that the attention

mixture weights approximate the uniform distribution over the relevant positions, then use the

ReLU network to memorize all distinct values of f. Full proofs are given in Appendix A.2.5.

Other realizable functions. Since there are
(T
s
)
s-sparse subsets of input indices, the sam-

ple complexity of learning a sparse Boolean function must scale at least as Ω(s logT), matching the

capacity bounds in terms of the logT dependence. However, sparse functions are not the only po-

tentially useful functions realizable by bounded-norm Transformers. For instance, withWQ =

WK = 0, so that all scores are zero, a Transformer head can take an average of T embeddings

X → 1
T1

⊤XWV. More generally, departing from the “orthogonal context vectors” embedding of

Boolean inputs but using the same constructions as in this section, it is straightforward to conclude

that bounded-norm Transformers can compute global averages of tokens whose XWK embeddings

lie in an s-dimensional subspaces. This is why our results do not contradict the empirical finding of
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Clark et al. (2019) that some attention heads in trained Transformer models attend broadly. It is

also straightforward to extend some of these results beyond Boolean domains; see Section A.2.4 for a

sketch.

Bypassing theoretical limitations. Hahn (2020) points out that with constant weight

norms, a Transformer’s ability to express global dependencies degrades with context length: as T →

∞, the maximum change in output caused by altering a single input token approaches 0, and thus

various interesting formal languages cannot be modeled by a Transformer in this particular limit.

The constructions in this section show that this can be circumvented by allowing d and the weight

norms to scale as log(T).

4.6 Experiments

Sections 4.4 and 4.5 show theoretically that Transformers can learn sparse Boolean functions, with

sparse regression-like sample complexity (in terms of the logT dependence). In this section, we

present an empirical study which probes the end-to-end sample efficiency of Transformer archi-

tectures with standard training and architecture hyperparameters, and how it scales with the context

length T.

Setup. We introduce a synthetic benchmark to support our analysis, in which we measure the

statistical limit for learning sparse Boolean functions with Transformers. We choose a distribution

D on {0, 1}T, and a family of distinct functions {fi : {0, 1}T → {0, 1}}i=∈[N], whereN grows

with T. Then, we choose an i∗ ∈ [N] uniformly at random, and train a Transformer binary classifier

onm samples fromD, with labels given by fi∗ , evaluating generalization error via holdout samples.

Then, for any learner to reach 100% accuracy on this sample,m ≥ Ω(logN) samples are required
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Figure 4.2: Main experimental finding: the sample complexity of learning a 3‐sparse AND function of T input bits with
Transformers. For each T, we measure the smallest sample sizem necessary to reach 100% validation accuracy on
≥ 80% of random trials. We find that this threshold scales logarithmically with T.

(one sample reveals at most one bit of information about i∗). We can then measure the empirical

scaling of the sufficient sample sizem to solve this problem, in terms ofN (and thus T).

Learning sparse conjunctions. Concretely, we can choose fi be the set of all
(T
s
)
conjunc-

tions of s inputs (e.g. y = x2 ∧ x3 ∧ x10), fixing the input distributionD to be i.i.d. Bernoulli

(we choose the bias to balance the labels). The model must learn which subset of s features are rel-

evant, out of
(T
s
)
possibilities; this requires at leastm ≥ Ω(s logT) samples. The theoretical anal-

ysis predicts that the sample complexity of learning any function realizable by a bounded-norm

Transformer should asymptotically have the same logT scaling. We choose a fixed sparsity parame-

ter s = 3, and measure how the empirical sample complexity (i.e. the smallest sample sizem(T) at

which model training succeeds with non-negligible probability) scales with T.

Results. With architecture and training hyperparameters typical of real Transformer setups

(except the number of layers, which we set to 1), we indeed observe that the empirical sample com-

plexity appears to scale as logT; see Figure 4.2. Despite the exponentially large support of input bit

strings x and large total parameter count (∼ 105), the attention weights vanish on the T − s irrele-
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Figure 4.3: Additional visualizations for the sparse function learning experiments. Left: Examples of validation accuracy
curves on the same problem instance (T = 300), with sample sizes above (m = 200) and below (m = 50) the
threshold (≈ 70 from Figure 4.2). Training accuracy goes to 100% in both cases, but the Transformer overfits (orange
curves) whenm is too small. Right: Per‐example attention weights for a successfully trained model (T = 50,m = 300,
I = {5, 20, 30}). The input‐dependent attention weights approximately zero out the irrelevant bits.

vant coordinates, and the model converges to sparse solutions; this is visualized in Figure 4.3 (right).

Details are provided in Appendix A.3.1; in particular, model training near the statistical threshold is

extremely unstable, and extensive variance reduction (best of 5 random restarts; 40 replicates; a total

of∼ 104 training runs across each T,m) was necessary to produce these scaling plots.

Beyond our analysis: sparse parities. When choosing the family of sparse functions {fi},

we can replace the AND operation with XOR: the label is the parity of a randomly chosen subset

of i.i.d. uniform input bits. In this setting, unlike the AND case, there is a computational-statistical

gap: Θ(s logT) samples suffice to identify, but the fastest known algorithms for learning parities

with noise require TΩ(s) time. In the statistical query model, Ω(Ts) iterations of noisy batch gra-

dient descent are necessary (Kearns, 1998). Figure 4.4 (with details in Appendix A.3.2) shows that

when trained with i.i.d. samples, Transformer models can learn sparse parities. This raises an intrigu-

ing question, which is the computational analogue of the current work’s statistical line of inquiry:

how does local search (i.e. gradient-based training) succeed at finding solutions that correspond to

sparse discrete functions? The present work merely shows that these solutions exist; we intend to
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Figure 4.4: A curious empirical finding: Transformers can learn sparse parities. Loss curves (across 10 random seeds for
initialization and SGD samples) are shown for this setup with s = 3,T ∈ {10, 15}, exhibiting phase transitions from
random guessing to 100% accuracy. See Appendix A.3.2 for details.

address the computational mystery in future work.

4.7 Conclusion and future work

This work establishes a statistical analysis of attention and self-attention modules in neural net-

works. In particular, we identify an inductive bias we call sparse variable creation, consisting of (1)

covering number-based capacity bounds which scale as logT, and (2) constructions which show

that self-attention models with small weight norms can represent sparse functions. This analysis is

supported by an empirical study on learning sparse Boolean functions with Transformers. We hope

that these rigorous connections between attention and sparsity, as well as the proposed experimen-

tal protocols, will inform the practice of training and regularizing these models, and the design of

future attention-based architectures.

We believe that it is possible to refine the covering number bounds (where we have only sought

to obtain optimal dependences on T) as well as the representation results (where we have not used

the structure of the MLP, beyond its capacity for exhaustive memorization). Significant challenges

(which are not specific to attention) remain in closing the theory-practice gap: precisely understand-

ing the role of depth, as well as the trajectory of the optimization algorithm.

An exciting line of empirical work has made progress on understanding and interpreting state-
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of-the-art Transformer language models by examining the activations of their attention mechanisms

(Clark et al., 2019; Tenney et al., 2019; Rogers et al., 2020). In some cases, these works have found

instances in which Transformers seem to have learned features that are reminiscent of (sparse) hand-

crafted features used in natural language processing. Reconciling our theoretical foundations work

with this area of BERTology is an avenue for future synthesis.
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This chapter is based on “Hidden Progress in Deep Learning: SGD Learns

Parities Near the Computational Limit” (Barak et al., 2022), written in

collaboration with Boaz Barak, Surbhi Goel, Sham Kakade, EranMalach,

and Cyril Zhang.

5
Hidden Progress

There is mounting evidence of emergent phenomena in the capabilities of deep learning methods as

we scale up datasets, model sizes, and training times. While there are some accounts of how these

resources modulate statistical capacity, far less is known about their effect on the computational

problem of model training. This work conducts such an exploration through the lens of learning a

k-sparse parity of n bits, a canonical discrete search problem which is statistically easy but computa-

tionally hard. Empirically, we find that a variety of neural networks successfully learn sparse parities,

48



with discontinuous phase transitions in the training curves. On small instances, learning abruptly

occurs at approximately nO(k) iterations; this nearly matches SQ lower bounds, despite the appar-

ent lack of a sparse prior. Our theoretical analysis shows that these observations are not explained

by a Langevin-like mechanism, whereby SGD “stumbles in the dark” until it finds the hidden set of

features (a natural algorithm which also runs in nO(k) time). Instead, we show that SGD gradually

amplifies the sparse solution via a Fourier gap in the population gradient, making continual progress

that is invisible to loss and error metrics.

5.1 Introduction

In deep learning, performance improvements are frequently observed upon simply scaling up re-

sources (such as data, model size, and training time). While these improvements are often continu-

ous in terms of these resources, some of the most surprising recent advances in the field have been

emergent capabilities: at a certain threshold, behavior changes qualitatively and discontinuously.

Through a statistical lens, it is well-understood that larger models, trained with more data, can fit

more complex and expressive functions. However, far less is known about the analogous computa-

tional question: how does the scaling of these resources influence the success of gradient-based optimiza-

tion?

These phase transitions cannot be explained via statistical capacity alone: they can appear even

when the amount of data remains fixed, with only model size or training time increasing. A timely

example is the emergence of reasoning and few-shot learning capabilities when scaling up language

models (Radford et al., 2019; Brown et al., 2020; Chowdhery et al., 2022; Hoffmann et al., 2022);

Srivastava et al. (2022) identify various tasks which language models are only able to solve if they

are larger than a critical scale. Power et al. (2021) give examples of discontinuous improvements

in population accuracy (“grokking”) when running time increases, while dataset and model sizes
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Figure 5.1: Main empirical findings at a glance. A variety of neural networks, with standard training and initialization,
can solve the (n, k)‐parity learning problem, with a number of iterations scaling as nO(k). Left: Training curves under
various algorithmic choices (architecture, batch size, learning rate) on the (n = 50, k = 3)‐parity problem. Right:
Median convergence times for small (n, k).

remain fixed.

In this work, we analyze the computational aspects of scaling in deep learning, in an elementary

synthetic setting which already exhibits discontinuous improvements. Specifically, we consider the

supervised learning problem of learning a sparse parity: the label is the parity (XOR) of k � n

bits in a random length-n binary string. This problem is computationally difficult for a range of

algorithms, including gradient-based (Kearns, 1998) and streaming (Kol et al., 2017) algorithms. We

focus on analyzing the resource measure of training time, and demonstrate that the loss curves for

sparse parities display a phase transition across a variety of architectures and hyperparameters (see

Figure 5.1, left). Strikingly, we observe that SGD finds the sparse subset (and hence, reaches 0 error)

with a variety of activation functions and initialization schemes, even with no over-parameterization.

A natural hypothesis to explain SGD’s success in learning parities, with no visible progress in

error and loss for most of training, would be that it simply “stumbles in the dark”, performing ran-

dom search for the unknown target (e.g. via stochastic gradient Langevin dynamics). If that were

the case, we might expect to observe a convergence time of 2Ω(n), like a naive search over parameters

or subsets of indices. However, Figure 5.1 (right), already provides some evidence against this “ran-
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dom search” hypothesis: the convergence time adapts to the sparsity parameter k, with a scaling of

nO(k) on small instances. Notably, such a convergence rate implies that SGD is closer to achieving

the optimal computation time among a natural class of algorithms (namely, statistical query algo-

rithms).

Through an extensive empirical analysis of the scaling behavior of a variety of models, as well as

theoretical analysis, we give strong evidence against the “stumbling in the dark” viewpoint. Instead,

there is a hidden progress measure under which SGD is steadily improving. Furthermore, and per-

haps surprisingly, we show that SGD achieves a computational runtime much closer to the optimal

SQ lower bound than simply doing (non-sparse) parameter search. More generally, our investiga-

tions reveal a number of notable phenomena regarding the dependence of SGD’s performance on

resources: we identify phase transitions when varying data, model size, and training time.

5.1.1 Our contributions

SGD learns sparse parities. It is known from SQ lower bounds that with a constant noise

level, gradient descent on any architecture requires at least nΩ(k) computational steps to learn k-

sparse n-dimensional parities (for background, see Appendix B.1). We first show a wide variety of

positive empirical results, in which neural networks successfully solve the parity problem in a num-

ber of iterations which scales near this computational limit:

Empirical Finding 5.1. For all small instances (n ≤ 30, k ≤ 4) of the sparse parity problem,

architecturesA ∈ {2-layer MLPs, Transformers*, sinusoidal/oscillating neurons, PolyNets†},

initializations in {uniform, Gaussian, Bernoulli}, and batch sizes 1 ≤ B ≤ 1024, SGD onA solves

the (n, k)-sparse parity problem (w.p. ≥ 0.2) within at most c · nαk steps, for small constants c, α.
*With a smaller range of hyperparameters.
†A non-standard architecture introduced in this work; see Section 5.3 for the definition.
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Theoretical analyses of sparse feature emergence. Our empirical results suggest that,

in a number of computational steps matching the SQ limit, SGD is able to solve the parity prob-

lem and identify the influential coordinates, without an explicit sparse prior. We give a theoretical

analysis which validates this claim.

Informal Theorem 5.2. On 2-layer MLPs of width 2Θ(k), and with batch size nO(k), SGD con-

verges with high probability to a solution with at most ε error on the (n, k)-parity problem in at

most 2O(k) · poly(1/ε) iterations.

We also present a stronger analysis for an idealized architecture (which we call the disjoint-PolyNet),

which allows for any batch size, and captures the phase transitions observed in the error curves.

Informal Theorem 5.3. On disjoint-PolyNets, SGD (with any batch size B ≥ 1) converges with high

probability to a solution with at most ε error on the (n, k)-parity problem in at most nO(k) · log(1/ε)

iterations. Continuous-time gradient flow exhibits a phase transition: it spends a 1− o(1) fraction of

its time before convergence with error≥ 49%.

Our theoretical and empirical results hold in non-overparameterized regimes (including with a

width-1 sinusoidal neuron), in which no fixed kernel, including the neural tangent kernel (NTK)

(Jacot et al., 2018), is sufficiently expressive to fit all sparse parities with a large margin. Thus, our

findings comprise an elementary example of combinatorial feature learning: SGD can only success-

fully converge by learning a low-width sparse representation.

Further empirical explorations. Building upon our core positive results, we provide a

wide variety of preliminary experiments, showing sparse parity learning to be a versatile testbed for

understanding the challenges and surprises in solving combinatorial problems with neural networks.

These include quantities which reveal the continual hidden progress behind uninformative training

curves (as predicted by the theory), experiments at small sample sizes which exhibit grokking (Power
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et al., 2021), as well as an example where greedy layer-wise learning is impossible but end-to-end

SGD can learn the layers jointly.

5.1.2 Related work

We present the most directly related work on feature learning, and learning parities with neural nets.

A broader discussion can be found in Appendix B.1.3.

SGD and feature learning. Theoretical analysis of gradient descent on neural networks is

notoriously hard, due to the non-convex nature of the optimization problem. That said, it has been

established that in some settings, the dynamics of GD keep the weights close to their initialization,

thus behaving like convex optimization over the Neural Tangent Kernel (see, for example, (Jacot

et al., 2018; Allen-Zhu et al., 2019; Du et al., 2018)). In contrast, it has been shown that in various

tasks, moving away from the fixed features of the NTK is essential for the success of neural networks

trained with GD (for example (Yehudai & Shamir, 2019; Allen-Zhu & Li, 2019; Wei et al., 2019a)

and the review in (Malach et al., 2021)). These results demonstrate that feature learning is an impor-

tant part of the GD optimization process. Our work also focuses on a setting where feature learning

is essential for the target task. In our theoretical analysis, we show that the initial population gra-

dient encodes the relevant features for the problem. The importance of the first gradient step for

feature learning has been recently studied in (Ba et al., 2022).

Learning parities with neural networks. The problem of learning parities using neural

networks has been investigated in prior works from various perspectives. It has been demonstrated

that parities are hard for gradient-based algorithms, using similar arguments as in the SQ analysis

(Shalev-Shwartz et al., 2017; Abbe & Sandon, 2020). One possible approach for overcoming the

computational hardness is to make favorable assumptions on the input distribution. Indeed, re-
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cent works show that under various assumptions on the input distribution, neural networks can

be efficiently trained to learn parities (XORs) (Daniely &Malach, 2020; Shi et al., 2021; Frei et al.,

2022a; Malach et al., 2021). In contrast to these results, this work takes the approach of intention-

ally focusing on a hard benchmark task, without assuming that the distribution has some favorable

(namely, non-uniform) structure. This setting allows us to probe the performance of deep learning

at a known computational limit. Notably, the work of Andoni et al. (2014) provides analysis for

learning polynomials (and in particular, parities) under the uniform distribution. However, their

main results require a network of size nO(k) (i.e., extremely overparameterized network), and pro-

vides only partial theoretical and empirical evidence for the success of smaller networks. Studying a

related subject, some works have shown that neural networks display a spectral bias, learning to fit

low-frequency coefficients before high-frequency ones (Rahaman et al., 2019; Cao et al., 2019).

5.2 Preliminaries

We provide an expanded discussion of background and related work in Appendix B.1.

Sparse parities. For integer n ≥ 1 and non-empty set S ⊆ [n], the (n, S)-parity function

χS : {±1}n → {±1} is defined as χS(x) =
∏

i∈S xi. We define the (n, S)-parity distributionDS

as the joint distribution over (x, y)* where x is drawn fromUnif({±1}n), the uniform distribution

over random length-n sign vectors, and y := χS(x) is the product of the inputs at the indices given

by the “relevant features” S (thus,±1, depending on whether the number of relevant−1 inputs

is even or odd). We define the (n, k)-parity learning problem as the task of recovering the S using

samples fromDS, where S is chosen at random from
([n]
k
)
.

A key fact about parities is that they are orthogonal under the correlation inner product: for

*Our theoretical analyses and experiments can tolerate noisy parities, that is, random flipping of the label;
see Appendix B.3.6. For ease of presentation, we state the noiseless setting in the main paper.
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S′ ⊆ [n],

E
x∼Unif({±1}n)

[
χS(x)χS′(x)

]
= E

(x,y)∼DS

[
χS′(x) y

]
=


1 S′ = S

0 otherwise
.

That is, a learner who guesses indices S′ cannot use correlations (equivalently, the accuracy of the

hypothesis χS′) as feedback to reveal which indices in S
′ are correct, unless S′ is exactly the correct

subset. This notion of indistinguishability leads to a computational lower bound in the statistical

query (SQ) model (Kearns, 1998): Ω(nk) constant-noise queries are necessary, which is far greater

than the statistical limit of Θ(log
(n
k
)
) ≈ k log n samples. The hardness of parity has been used to

derive computational hardness results for other settings, like agnostically learning halfspaces (Kli-

vans & Kothari, 2014) andMLPs (Goel et al., 2019). Beyond the restricted computational model of

statistical queries, noiseless parities can be learned in poly(n) time via Gaussian elimination. How-

ever, learning sparse noisy parities, even at a very small noise level (i.e., o(1) or n−δ), is believed to

inherently require nΩ(k) computational steps.* In all, learning sparse parities is a well-studied combi-

natorial problem which exemplifies the computational difficulty of learning a joint dependence on

multiple relevant features.

Notation for neural networks and training. Our main results are presented in the

online learning setting, with a stream of i.i.d. batches of examples. At each iteration t = 1, . . . ,T,

a learning algorithmA receives a batch of B examples {(xt,i, yt,i)}Bi=1 drawn i.i.d. fromDS, then

outputs a classifier ŷt : {±1}n → {±1}. We say thatA solves the parity task in t steps (with error ε)

if

Pr
(x,y)∼DS

[̂yt(x) = y] ≥ 1− ε.

*This was first explicitly conjectured by Alekhnovich (2003), and has been the basis for several crypto-
graphic schemes (e.g., (Ishai et al., 2008; Applebaum et al., 2009, 2010; Bogdanov et al., 2019)).
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Figure 5.2: Black‐box observations on the training dynamics. Left: Histograms of convergence times over 106 random
trials, with heavy upper tails but no observed successes near t = 0 (unlike random search). Center: Loss curves (and
thus, convergence time) depend heavily on initialization, not the randomness of SGD; B = 128, η = 0.01 are shown
here. Right: The power‐law exponent (α such that tc ∝ nα) eventually worsens on larger problem instances.

Wewill focus on the case that ŷt = sign(f(x; θt)) for some parameters θt in a continuous domain Θ

and for a continuous function f : {±1}n × Θ → R,* updated with the ubiquitous online learning

algorithm of gradient descent (GD), whose update rule is given by

θt+1 ← (1− λt)θt − ηt · ∇θ

(
1
B

B∑
i=1

ℓ(yt,i, f(xt,i; θt))

)
, (5.1)

for a loss function ℓ : {±1} × R → R, learning rate schedule {ηt}
T
t=1, and weight decay schedule

{λt}Tt=1†. The initialization θ0 is drawn randomly from a chosen distribution.

5.3 Empirical findings

5.3.1 SGD on neural networks learns sparse parities

The central phenomenon of study in this work is the empirical observation that neural networks,

with standard initialization and training, can solve the (n, k)-parity problem in a number of itera-

tions scaling as nO(k) on small instances. We observed robust positive results for randomly-initialized

*When f(x; θ) = 0 in practice (e.g. with sign initialization), we break the tie arbitrarily. We ensure in the
theoretical analysis that this does not happen.

†We allow different layers to have different learning rate and weight decay schedules.

56



SGD on the following architectures, indexed by Roman numerals:

• 2-layer MLPs: ReLU (σ(z) = (z)+) or polynomial (σ(z) = zk) activation, in a wide variety

of width regimes r ≥ k. Settings (i), (ii), (iii) (resp. (iv), (v), (vi)) use r = {10, 100, 1000}

ReLU (resp. polynomial) activations. We also consider r = k (exceptional settings (*i), (*ii) ),

the minimumwidth for representing a k-wise parity for both activations.

• 1-neuron networks: Next, we consider non-standard activation functions σ which allow a

one-neuron architecture f(x;w) = σ(w⊤x) to realize k-wise parities. The constructions stem

from letting w∗ =
∑

i∈S ei, and constructing σ(·) to interpolate (the appropriate scaling of)
k−w∗⊤x

2 mod 2 with a piecewise linear k-zigzag activation (vii), or a degree-k polynomial (viii).

Going a step further, a single∞-zigzag (ix) or sinusoidal (x) neuron can represent all k-wise

parities. In settings (xi), (xii), (xiii), (xiv), we remove the second trainable layer (setting u = 1).

We find that wider architectures with these activations also train successfully.

• Transformers: There is growing interest in using parity as a benchmark for combinatorial

function learning, long-range dependency learning, and length generalization in Transformers

(Lu et al., 2021; Edelman et al., 2022; Hahn, 2020; Anil et al., 2022; Liu et al., 2022a). Moti-

vated by these recent theoretical and empirical works, we consider a simplified specialization

of the Transformer architecture to this sequence classification problem. This is the less-robust

setting (*iii); the architecture and optimizer are described in Appendix B.4.1.

• PolyNets: Our final setting (xv) is the PolyNet, a slightly modified version of the parity ma-

chine architecture. Parity machines have been studied extensively in the statistical mechanics of

ML literature (see the related work section) as well as in a line of work on ‘neural cryptography’

(Rosen-Zvi et al., 2002). A parity machine outputs the sign of the product of k linear func-

tions of the input. A PolyNet simply outputs the product itself. Both architectures can clearly

realize k-sparse parities. The PolyNet architecture was originally motivated by the search for
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an idealized setting where an end-to-end optimization trajectory analysis is tractable (see Sec-

tion 5.4.1); we found in these experiments that this architecture trains very stably and sample-

efficiently.

Robust space of positive results. All of the networks listed above were observed to suc-

cessfully learn sparse parities in a variety of settings. We summarize our findings as follows: for all

combinations of n ∈ {10, 20, 30}, k ∈ {2, 3, 4}, batch sizes B ∈ {1, 2, 4, . . . , 1024}, initializations

{uniform, Gaussian, Bernoulli}, loss functions {hinge, square, cross entropy}, and architecture

configurations {(i), (ii), . . . , (xv)}, SGD solved the parity problem (with 100% accuracy, validated

on a batch of 213 samples) in at least 20% of 25 random trials, for at least one choice of learning rate

η ∈ {0.001, 0.01, 0.1, 1}. The models converged in tc ≤ c · nαk ≤ 105 steps, for small architecture-

dependent constants c, α (see Appendix B.3). Figure 5.1 (left) shows some representative training

curves.

Less robust configurations. Settings (*i) and (*ii), where the MLP just barely represents

a k-sparse parity, and the Transformer setting (*iii), are less robust to small batch sizes. In these set-

tings, the same positive results as above only held for sufficiently large batch sizes: B ≥ 16. Also,

setting (*iii) used the Adam optimizer (which is standard for Transformers); see Appendix B.4.1 for

details.

Phase transitions in training curves. For almost all of the architectures, we find that

that the training curves exhibit phase transitions in terms of running time (and thus, in the online

learning setting, dataset size as well): long durations of seemingly no progress, followed by periods of

rapid decrease in the validation error. Strikingly, for architectures (v) and (vi), this plateau is absent:

the error in the initial phase appears to decrease with a linear slope. See Appendix B.3.8 for more

plots.
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5.3.2 Random search or hidden progress?

The remainder of this paper seeks to answer the question: “By what mechanism does deep learning

solve these emblematic computationally-hard optimization problems?”

A natural hypothesis would be that SGD somehow implicitly performsMonte Carlo random

search, “bouncing around” the loss landscape in the absence of a useful gradient signal. Upon closer

inspection, several empirical observations clash with this hypothesis:

• Scaling of convergence times:Without an explicit sparsity prior in the architecture or initial-

ization, it is unclear how to account for the runtimes observed in experiments, which adapt to

the sparsity k. The initializations, which certainly do not prefer sparse functions*, are close to

the correct solutions with probability 2−Ω(n) � n−k.

• No early convergence: Over a large number of random trials, no copies of this randomized

algorithm get “lucky” (i.e. solve the problem in significantly fewer than the median number

of iterations); see Figure 5.2 (left). The success times of random exhaustive search would be

distributed as Geom(1/
(n
k
)
), whose probability mass is highest at t = 0 and decreases mono-

tonically with t.

• Sensitivity to initialization, not SGD samples: Running these training setups over multi-

ple stochastic batches from a common initialization, we find that loss curves and convergence

times are highly correlated with the architecture’s random initialization, and are quite concen-

trated conditioned on initialization; see Figure 5.2 (center).

• Elbows in the scaling curves: For larger n, the power-law scaling ceases to hold: the exponent

worsens (see Figure 5.2 (right), as well as the discussion in Appendix B.3.2). This would not be

*Indeed, under all standard architectures and initialization, the probability that a random network is
Ω(1)-correlated with a sparse parity would be 2−Ω(n), since with that probability 1 − o(1) of the total influ-
ence would be accounted by the n− k irrelevant features.
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Figure 5.3: Hidden progress when learning parities with neural networks. Left, center: Black‐box losses and accuracies
exhibit a long plateau and sharp phase transition (top), hiding gradual progress in the SGD iterates (bottom). Right: A
hidden progress measure which distinguishes gradual feature amplification (top) from training on noise (bottom).

true for random exhaustive search.

Even these observations, which do not probe the internal state of the algorithm, suggest that

exhaustive search is an insufficient picture of the training dynamics, and a different mechanism is at

play.

5.4 Theoretical analyses

5.4.1 Provable emergence of the parity indices in high-precision gradients

We now provide a theoretical account for the success of SGD in solving the (n, k)-parity problem.

Our main theoretical observation is that, in many cases, the population gradient of the weights at ini-

tialization contains enough “information” for solving the parity problem. That is, given an accurate

enough estimate of the initial gradient (by e.g. computing the gradient over a large enough batch

size), the relevant subset S can be found.

As a warm-up example, consider training a single ReLU neuron ŷ(x;w) = (w⊤x)+ with the

correlation loss ℓ(y, ŷ) = −ŷy overDS, from an all-ones initialization w = [1 . . . 1] ∈ Rn. While a
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single neuron cannot express the parity, we observe that the correct subset can be extracted from the

population gradient at initialization:

E
(x,y)∼DS

[∇wiℓ(y, ŷ(x;w))] = E
(x,y)∼DS

[
−y∇wi(w⊤x)+

]
= E

(x,y)∼DS

[
−χSxi1

[∑
i
xi ≥ 0

]]
.

The key insight is that each coordinate in the above expression is a correlation between a parity and

the function x 7→ −1[
∑

i xi ≥ 0], and thus a Fourier coefficient of this Boolean function. At

each relevant coordinate (i ∈ S), the population gradient is the order-(k − 1) Fourier coefficient

S \ {i}; for the irrelevant features (i 6∈ S), it is instead the order-(k + 1) coefficient S ∪ {i}. All

we require is a detectable gap between these quantities. Formally, letting f(x;w) = σ(w⊤x), letting

f̂(S) := E
[
f(x)χS(x)

]
denote the Fourier coefficient of f at S, we isolate the desired property:

Definition 5.4 (Fourier gap). For a function f : {±1}n → R and S ⊆ [n] of size k, we say that f has

a γ-Fourier gap at S if, for every (k− 1)-element subset S− ⊂ S and (k+ 1)-element superset S+ ⊃ S,

it holds that |̂f(S−)| ≥ |̂f(S+)|+ γ.

For the all-ones initialization, observe 1[
∑

i xi ≥ 0] =
1+sign(

∑
i xi)

2 is just an affine trans-

formation of the majority function of x, for which a Fourier gap can be established, with γ =

Θ(n−(k−1)/2). This arises from closed-form formulas for the Fourier spectrum of majority (see

Lemma B.2 in Appendix B.2.1), a landmark result from the harmonic analysis of Boolean functions

(Titsworth, 1962; O’Donnell, 2014). Thus, the coordinates in S can be recovered from Õ(1/γ2) =

Õ(nk−1) samples; see Proposition B.7 in Appendix B.2.2 for a formal argument.

Carefully extending this insight, we obtain an end-to-end convergence result for ReLU-activation

MLP networks with a particular symmetric choice of±1 initialization, trained with the hinge loss:

Theorem 5.5 (SGD onMLPs learns sparse parities). Let ε ∈ (0, 1). Let k ≥ 2 an even integer, and

let n = Ω(k4 log(nk/ε)) be an odd integer. Then, there exist a random initialization scheme, ηt, and
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λt such that for every S ⊆ [n] of size k, SGD on a ReLUMLP of width r = Ω(2kk log(k/ε)), with

batch size B = Ω(nk log(n/ε)) onDS with the hinge loss, outputs a network f(x; θt) with expected* loss

E [ℓ(f(x; θt), y)] ≤ ε in at most O(k3r2n/ε2) iterations.

This does not capture the full range of settings in which we empirically observe successful con-

vergence. First, it requires a sign vector initialization, while we observe convergence with other

random initialization schemes (namely, uniform and Gaussian). Second, it requires the batch size

to scale with nΩ(k)†, while we also obtain positive results when B is small (even B = 1). Analo-

gous statements for these cases (as well as other activations and losses) would require Fourier gaps

for population gradient functions other than majority; lower bounds on the degree-(k − 1) co-

efficients (“Fourier anti-concentration”) are particularly elusive in the literature, and we leave it as

an open challenge to establish them in more general settings. We provide preliminary empirics in

Appendix B.3.1, suggesting that the Fourier gaps in our empirical settings are sufficiently large.‡

Lowwidth necessitates feature learning. We note that in the low-width (non-overparameterized)

regimes considered in this work, no fixed kernel (including the neural tangent kernel (Jacot et al.,

2018), whose dimensionality is the network’s parameter count) can solve the sparse parity problem.

The following is a consequence of results in (Kamath et al., 2020; Malach & Shalev-Shwartz, 2022):

Theorem 5.6 (Low-width NTK cannot fit all parities). LetΨ : {±1}n → RD be any D-dimensional

embedding with supx ‖Ψ(x)‖2 ≤ 1. Let R, ε > 0, and let ℓ denote the 0-1 loss or hinge loss. If

DR2 < ε2 ·
(n
k
)
, then there exists some S ⊆ [n] of size k such that

inf
∥w∥≤R

E
(x,y)∼DS

[
ℓ(Ψ(x)⊤w, y)

]
> 1− ε.

*The expectation is over the randomness of initialization, training and sampling (x, y) ∼ DS.
†In fact, at this batch size, the correct parity indices emerge in a single SGD step.
‡Interestingly, we observe that the Fourier gap tends to increase over the course of training. This is not

captured by our current theoretical analysis.
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Thus, our low-width results lie outside the NTK regime, which requires far larger models (size

nΩ(k)) to express parities. However, we note that better sample complexity bounds are possible

in the NTK regime, with an algorithmmore similar to standard SGD (see (Telgarsky, 2022) and

Appendix B.1.3).

5.4.2 Disjoint-PolyNet: exact trajectory analysis for an idealized architecture

In this section, we present an architecture (a version of PolyNets (xv)) which empirically exhibits

similar behavior to MLPs and bypasses the difficulty of analyzing Fourier gaps. The disjoint-PolyNet

takes a product over k linear functions of an equal-sized* partition P1, . . . , Pk of the input coordi-

nates: f(x;w1:k) :=
∏k

i=1〈wi, xPi〉. As noted in the Section 5.1.2, this is equivalent to a tree parity

machine, with real-valued (instead of±1) outputs.

This architecture also requires us to assume that the set S of size k in the (n, k)-parity problem

is selected such that exactly one index belongs to each disjoint partition, that is, for all i ∈ [k], S ∩

Pi = 1. We refer to this problem as the (n, k)-disjoint parity problem. Note that there are still

(n′)k = (n/k)k different possibilities for set S under this restriction. For fixed k, these represent a

constant fraction of the
(n
k
)
≈ (ne/k)k (by Stirling’s approximation) possibilities for S in the general

non-disjoint case.

Consider training a disjoint-PolyNet w.r.t. the correlation loss. Without loss of generality, as-

sume that each relevant coordinate in S is the first element Pi. Then, the population gradient is

non-zero only at indices i ∈ S:

gi(w1:k) = E [∇wiℓ(f(x;w1:k), y)] = −E

y
∏

j̸=i

〈wj, xPj〉

 xPi

 = −

∏
j̸=i

wj,1

 e1.

This allows us to analyze the gradient flow dynamics of the disjoint-PolyNet, without needing to

*We assume for simplicity that n is divisible by k.
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establish Fourier gaps. For each i ∈ [k], in this section we treat wi as a function fromR≥0 → Rn′

which satisfies the following differential equation: ẇi = −gi(w1:k(t)). For clarity of exposition,

assume all-ones initialization.* Then, all of the relevant weights {wi,1 : i ∈ [k]} follow the same tra-

jectory. By analyzing the resulting differential equations, we can formally exhibit “phase transition”-

like behavior in the fully deterministic gradient flow setting.

Theorem 5.7 (Loss plateau for gradient flow on disjoint-PolyNets). Suppose k ≥ 3. Let T(ε) denote

the smallest time at which the error is at most ε. Then,

T(0.49)
T(0)

≥ 1− O
(
(n′)1−k/2

)
.

Informally, the network takes much longer to reach slightly-better-than-trivial accuracy than it

takes to go from slightly better than trivial to perfect accuracy. Returning to discrete time, we also

analyze the trajectory of disjoint-PolyNets trained with online SGD at any batch size, confirming

that a neural network can learn k-sparse disjoint parities within nO(k) iterations.

Theorem 5.8 (SGD on disjoint-PolyNets learns disjoint parities). Suppose we train a disjoint-

PolyNet, initialized as above, with online SGD. Then there exists an adaptive learning rate schedule

such that for any ε > 0, with probability 0.99, the error falls below ε within Õ
(
(n′)(2k−1) log(1/ε)

)
steps.

Extended versions of these theorems, along with proofs, can be found in Appendix B.2.3.

5.5 Hidden progress: discussion and additional experiments

So far, we have shown that sparse parity learning provides an idealized setting in which neural net-

works successfully learn sparse combinatorial features, with a mechanism of continual progress

*Results for Bernoulli and Gaussian initializations are similar, and can be found in the appendix.

64



100 101 102 103 104 105 106

ReLU MLP width r

100

101

102

103

104
co

nv
er

ge
nc

e 
tim

e
Time to solve (n = 40, k = 3)-parity vs. width

r copies of random search
underparameterized (r < k)

0 1 2
1e3

0.0

0.2

0.4

cla
ss

ifi
ca

tio
n 

er
ro

r

m = 10000

train
val

0 5
1e3

m = 1800

0 2 4
1e4

m = 1000

0.0 0.5 1.0
1e6

m = 700

iteration t

Figure 5.4: Parity as a sandbox for understanding the effects of model size and dataset size. Left: Success times vs.
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hiding behind discontinuous training curves. In this section, we outline preliminary explorations

on a broader range of interesting phenomena which arise in this setting. Details are provided in Ap-

pendix B.3, while more systematic investigations are deferred to future work.

Hidden progress measures for learning parities. The theoretical and (black-box) em-

pirical results suggest that SGD does not learn parities via the memoryless process of random exhaus-

tive search. This suggests the existence of progress measures: scalar quantities which are functions

of the training algorithm’s state (i.e. the model weights wt) and are predictive of the time to success-

ful convergence. We provide some white-box investigations which further support the hypothesis

of hidden progress, by examining the gradual improvement in quantities other than the training

loss. In Appendix B.3.1, we directly plot the Fourier gaps of the population gradient, as a function

of t, finding that they are large (within a small constant factor of those of majority) in practice. In

Figure 5.3 and Appendix B.3.3, we examine the weight movement norm ρ(w0:t) := ‖wt − w0‖∞

to reveal hidden progress, motivated by the fact that wt − w0 is a linearized estimate for the initial

population gradient.
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Roles of overparameterization vs. oversampling. An interesting consequence of our

analysis is that it illuminates scaling behaviors with respect to a third fundamental resource parame-

ter: model size, which we study in terms of network width r. If SGD operated by a “random search”

mechanism, one would expect width to provide a parallel speedup. Instead, we find that SGD se-

quentially amplifies progress. The sharp lower tails in Figure 5.2 (left) imply that running r identical

copies of SGD does not give (1/r)× speedups; more directly, in Appendix B.3.4 (previewed in Fig-

ure 5.4 (left)), we find that convergence times for sparse parities empirically plateau at large model

sizes.

Emergence of grokking in the finite-sample (multi-pass) setting. Our main results

are presented in the online learning setting (fresh minibatches fromDS at each iteration). While this

mitigates the confounding factor of overfitting, it couples the resources of training time and inde-

pendent samples in a suboptimal way, due to the computational-statistical gap for parity learning.

In Appendix B.3.5, we find empirically that minibatch SGD (with weight decay) can learn sparse

parities, even with smaller sample sizesm � nk. We reliably observe the grokking phenomenon

(Power et al., 2021): an initial overfitting phase, then a delayed phase transition in the generalization

error; see the two center panels of Figure 5.4 (right). These results complement and corroborate the

findings of Nanda & Lieberum (2022), who analyze the hidden progress of Transformers trained on

arithmetic tasks (a setting which also exhibits grokking).

Deeper networks. It is a significant challenge (and generally outside the scope of this work)

to understand the interactions between network depth and computational/statistical efficiency. In

Appendix B.3.7, we show that learning parities with deeper polynomial-activationMLPs comprises

a simple counterexample to the “deep only works if shallow is good” principle of Malach & Shalev-

Shwartz (2019): a deep network can get near-perfect accuracy, even when greedy layer-wise training
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(e.g. (Belilovsky et al., 2019)) cannot beat trivial performance. By providing positive theory and

empirics which elude these simplified explanations of SGD, we hope to point the way to a more

complete understanding of learning dynamics in the challenging cases where no apparent progress is

made for extended periods of time.

5.6 Conclusion

This work puts forward sparse parity learning as an elementary test case to explore the puzzling fea-

tures of the role of computational (as opposed to statistical) resources in deep learning. In partic-

ular, we have shown that a variety of neural architectures solve this combinatorial search problem,

with a number of computational steps nearly matching the sparsity-dependent SQ lower bound.

Furthermore, we have shown that despite abrupt phase transitions in the loss and accuracy curves,

SGDworks by gradually amplifying the sparse features “under the hood”.

Even in this simple setting, there are several open experimental and theoretical questions. This

work largely focuses on the online learning case, which couples training iterations with fresh i.i.d.

samples. We believe it would be instructive to investigate parity learning when the three resources of

samples, time, and model size are scaled separately. Some very preliminary findings along these lines

are presented in Section 5.3. It is an open problem to extend our theoretical results to the small-

batch setting, as well as to the full range of architectures and losses in our experiments. Resolving

these questions would require a better understanding of the anti-concentration behavior of Boolean

Fourier coefficients, which is much less studied than the analogous concentration phenomena.

Another important follow-up direction is understanding the extent to which these insights ex-

tend from parity learning to more complex (including real-world) combinatorial problem settings,

as well as the extent to which non-synthetic tasks (in, e.g., natural language processing and program

synthesis) embed within them parity-like subtasks of exhaustive combinatorial search. We hope that
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our results will lead to further progress towards understanding and improving the optimization

dynamics behind the recent slew of dramatic empirical successes of deep learning in these types of

domains.
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This chapter is based on “Pareto Frontiers in Deep Feature Learning: Data,

Compute,Width, and Luck” (Edelman et al., 2024a), written in collabora-

tion with Surbhi Goel, Sham Kakade, EranMalach, and Cyril Zhang.

6
Pareto Frontiers

In modern deep learning, algorithmic choices (such as width, depth, and learning rate) are known

to modulate nuanced resource tradeoffs. This work investigates how these complexities necessarily

arise for feature learning in the presence of computational-statistical gaps. We begin by considering

offline sparse parity learning, a supervised classification problem which admits a statistical query

lower bound for gradient-based training of a multilayer perceptron. This lower bound can be inter-

preted as amulti-resource tradeoff frontier: successful learning can only occur if one is sufficiently
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rich (large model), knowledgeable (large dataset), patient (many training iterations), or lucky (many

random guesses). We show, theoretically and experimentally, that sparse initialization and increasing

network width yield significant improvements in sample efficiency in this setting. Here, width plays

the role of parallel search: it amplifies the probability of finding “lottery ticket” neurons, which

learn sparse features more sample-efficiently. Finally, we show that the synthetic sparse parity task

can be useful as a proxy for real problems requiring axis-aligned feature learning. We demonstrate

improved sample efficiency on tabular classification benchmarks by using wide, sparsely-initialized

MLPmodels; these networks sometimes outperform tuned random forests.

6.1 Introduction

Algorithm design in deep learning can appear to be more like “hacking” than an engineering prac-

tice. Numerous architectural choices and training heuristics can affect various performance criteria

and resource costs in unpredictable ways. Moreover, it is understood that these multifarious hy-

perparameters all interact with each other; as a result, the task of finding the “best” deep learning

algorithm for a particular scenario is foremost empirically-driven. When this delicate balance of

considerations is achieved (i.e. when deep learning works well), learning is enabled by phenomena

which cannot be explained by statistics or optimization in isolation. It is natural to ask: is this hetero-

geneity of methods and mechanisms necessary?

This work studies a single synthetic binary classification task in which the above complications

are recognizable, and, in fact, provable. This is the problem of offline (i.e. small-sample) sparse parity

learning: identify a k-way multiplicative interaction between n Boolean variables, givenm random

examples. We begin by interpreting the standard statistical query lower bound for this problem as a

multi-resource tradeoff frontier for deep learning, balancing between the heterogeneous resources of

dataset size, network size, number of iterations, and success probability. We show that in different
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Figure 6.1: “More data or larger network?” Effects of jointly scaling the dataset and model sizes, for 2‐layer MLPs
trained to learn sparse parities. Left: A success frontier, where the computational challenge of feature learning can be
surmounted by increasing sample size or model size. Each point shows the percentage of successful training runs (out
of 50 trials) for each (dataset sizem, width r); (✓) denotes 100% successful trials. Right: 10 example training curves
(gray = training error; colored = test error) for each of the boxed (m, r) pairs. See main text and Section 6.4 for further
details.

regimes of simultaneous resource constraints (data, parallel computation, sequential computation,

and random trials), the standard algorithmic choices in deep learning can succeed by diverse and

entangled mechanisms. Specifically, our contributions are as follows:

Multi-resource lower and upper bounds. We formulate a “data×width× time× luck”

lower bound for offline sparse parity learning with feedforward neural nets (Theorem 6.3). This bar-

rier arises from the classic statistical query (SQ) lower bound for this problem. We show that under

different resource constraints, the tractability of learning can be “bought” with varied mixtures of

these resources. In particular, in Theorems 6.4 and 6.5 we prove that by tuning the width and ini-

tialization scheme, we can populate this frontier with a spectrum of successful models ranging from

narrow networks requiring many training samples to sample-efficient networks requiring many neu-

rons, as summarized by the following informal theorem statement:

Informal Theorem 6.1. Consider the problem of learning (n, k)-parities fromm i.i.d. samples with

a 2-layer width-rReLUMLP, whose first-layer neurons are initialized with sparsity s. AfterOn(1)

steps of gradient descent, the k relevant coordinates are identified with probability 0.99 when (1)
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s > Ω(k), r = Θ((n/s)k) andm = Θ(n2(s/k)k−1), and when (2) s < k, r = Θ((n/k)s) and

m = Θ((n/k)k−s−1).

Intuitively, this analysis reveals a feature learning mechanism by which overparameterization (i.e.

large network width) plays a role of parallel search over randomized subnetworks. Each individual

hidden-layer neuron has its own sample complexity for identifying the relevant coordinates, based

on its Fourier gap (Barak et al., 2022) at initialization. Trained with parallel gradient updates, the full

network implicitly acts as an ensemble model over these neurons, whose overall sample complexity is

determined by the “winning lottery tickets” (Frankle & Carbin, 2018) (i.e. the lucky neurons initial-

ized to have the lowest sample complexity). This departs significantly from the neural tangent kernel

(Jacot et al., 2018) regime of function approximation with wide networks, in which overparameteri-

zation removes data-dependent feature selection (rather than parallelizing it across subnetworks).

Empirical study of neural nets’ statistical thresholds for sparse parity learn-

ing. We corroborate the theoretical analysis with a systematic empirical study of offline sparse

parity learning using SGD onMLPs, demonstrating some of the (perhaps) counterintuitive effects

of width, data, and initialization. For example, Figure 6.1 highlights our empirical investigation into

the interactions between data, width, and success probability. The left figure shows the fractions of

successful training runs as a function of dataset size (x-axis) and width (y-axis). Roughly, we see a

“success frontier”, where having a larger width can be traded off with smaller sample sizes. The right

figure depicts some training curves (for various widths and sample sizes). Grokking (Power et al.,

2021; Liu et al., 2023) (discontinuous and delayed generalization behavior induced by optimization

dynamics) is evident in some of these figures.

“Parity2real” transfer of algorithmic improvements. It is often observed that deep

learning methods underperform tree-based methods (e.g. random forests) on tabular datasets, par-
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ticularly those where the target function depends on a few of the input features in a potentially non-

smooth manner; see Grinsztajn et al. (2022) for a recent discussion. Motivated by our findings in

the synthetic parity setting (and the observation that the sparse parity task possesses a number of the

same properties of these problematic real-world datasets), we then turn to experimentally determine

the extent to which our findings also hold for real tabular data. We evaluate MLPs of various depths

and initialization sparsities on 16 tabular classification tasks, which were standardized by Grinsztajn

et al. (2022) to compare neural vs. tree-based methods. Figure 6.3 shows that wider networks and

sparse initialization yield improved performance, as in the parity setting. In some cases, our MLPs

outperform tuned random forests.

6.1.1 Related work

In the nascent empirical science of large-scale deep learning, scaling laws (Kaplan et al., 2020; Hoff-

mann et al., 2022) have been shown to extrapolate model performance with remarkable consistency,

revealing flexible tradeoffs and Pareto frontiers between the heterogeneous resources of data and

computation. The present work reveals that in the simple synthetic setting of parity learning, the

same intricacies can be studied theoretically and experimentally. In particular, viewingmodel size×

training iterations× random restarts as a single “total FLOPs” resource, our study explains why data

× compute can be a necessary and sufficient resource, through the lens of SQ complexity.

Analyses of deep feature learning. Formally characterizing the representation learning

mechanisms of neural networks is a core research program of deep learning theory. Many recent

works have analyzed gradient-based feature learning (Wei et al., 2019a; Barak et al., 2022; Zhenmei

et al., 2022; Abbe et al., 2022a; Damian et al., 2022; Telgarsky, 2022), escaping the “lazy” neural

tangent kernel (NTK) regime (Jacot et al., 2018; Chizat et al., 2019), in which features are fixed at

initialization.
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Learning parities with neural networks. The XOR function has been studied as an ele-

mentary challenging example since the dawn of artificial neural networks (Minsky & Papert, 1969),

and has been revisited at various times: e.g. neural cryptography (Rosen-Zvi et al., 2002); learn-

ing interactions via hints in the input distribution (Daniely &Malach, 2020); a hard case for self-

attention architectures (Hahn, 2020). Closest to this work, Barak et al. (2022) find that in the case

of online (infinite-data) parity learning, SGD provides a feature learning signal for a single neuron,

and can thus converge at a near-optimal computational rate for non-overparameterized networks.

They note computational-statistical tradeoffs and grokking in the offline setting, which we address

systematically. Merrill et al. (2023) examine the same problem setting empirically, investigating a

mechanism of competing sparse and dense sub-networks. Abbe et al. (2023) provide evidence that

the time complexity required by anMLP to learn an arbitrary sparse Boolean function is governed

by the largest “leap” in the staircase of its monomials, each of which is a sparse parity. Telgarsky

(2022) gives a margin-based analysis of gradient flow on a two-layer neural network that achieves

improved sample complexity (Õ(n/ε)) for the 2-sparse parity problem, at the cost of exponential

width.

Neural nets and axis-aligned tabular data. Decision tree ensembles such as random

forests (Breiman, 2001) and XGBoost (Chen &Guestrin, 2016) remain more popular among prac-

titioners than neural networks on tabular data (Kaggle, 2021), despite many recent attempts to de-

sign specialized deep learning methods (Borisov et al., 2022). Some of these employ sparse networks

(Yang et al., 2022b; Lutz et al., 2022) similar to those considered in our theory and experiments.

We refer the reader to Appendix C.1 for additional related work.
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6.2 Background

6.2.1 Parities, and parity learning algorithms

A light bulb is controlled by k out of n binary switches; each of the k influential switches can toggle

the light bulb’s state from any configuration. The task in parity learning is to identify the subset of k

important switches, given access tom i.i.d. uniform samples of the state of all n switches. Formally,

for any 1 ≤ k ≤ n and S ⊆ [n] such that |S| = k, the parity function χS : {±1}n → ±1 is

defined as χS(x1:n) :=
∏

i∈S xi.* The (n, k)-parity learning problem is to identify S from samples

(x ∼ Unif({±1}n, y = χS(x))); i.e. output a classifier with 100% accuracy on this distribution,

without prior knowledge of S.

This problem has a rich history in theoretical computer science, information theory, and cryp-

tography. There are several pertinent ways to think about the fundamental role of parity learning:

(i) Monomial basis elements: A k-sparse parity is a degree-kmonomial, and thus the analogue

of a Fourier coefficient with “frequency” k in the harmonic analysis of Boolean functions

(O’Donnell, 2014). Parities form an important basis for polynomial learning algorithms (e.g.

Andoni et al. (2014)).

(ii) Computational hardness: There is a widely conjectured computational-statistical gap for

this problem (Applebaum et al., 2009, 2010), which has been proven in restricted models

such as SQ (Kearns, 1998) and streaming (Kol et al., 2017) algorithms. The statistical limit is

Θ(log(number of possibilities for S)) = Θ(k log n) samples, but the amount of computa-

tion needed (for an algorithm that can tolerate anO(1) fraction of noise) is believed to scale

as Ω(nck) for some constant c > 0 – i.e., there is no significant improvement over trying all

subsets.
*Equivalently, parity can be represented as a function of a bit string b ∈ {0, 1}n, which computes the

XOR of the influential subset of indices S: χS(b1:n) := ⊕i∈Sbi.
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(iii) Feature learning: This setting captures the learning of a concept which depends jointly

on multiple attributes of the inputs, where the lower-order interactions (i.e. correlations

with degree-k′ < k parities) give no information about S. Intuitively, samples from the

sparse parity distribution look like random noise until the learner has identified the sparse

interaction. This notion of feature learning complexity is also captured by the more general

information exponent (Arous et al., 2021).

6.2.2 Notation for neural networks

For single-output regression, a 2-layer multi-layer perceptron (MLP) is a function class, parameter-

ized by a matrixW ∈ Rr×n, vectors v, b ∈ Rr and scalar β ∈ R, defined by

ŷ : x 7→ v⊤σ(Wx+ b) + β,

where σ is an activation function, usually a scalar function applied identically to each input. For

rows wi ofW, the intermediate variables σ(w⊤
i x + bi) are thought of as hidden layer activations or

neurons. The number of parallel neurons is often called the width.

6.3 Theory

In this section we theoretically study the interactions between data, width, time, and luck on the

sparse parity problem. We begin by rehashing Statistical Query (SQ) lower bounds for parity learn-

ing in the context of gradient-based optimization, showing that without sufficient resources sparse

parities cannot be learned. Then, we prove upper bounds showing that parity learning is possible

with correctly scaling either width (keeping sample size small), sample size (keeping width small), or

a mixture of the two.
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Statistical query algorithms. A seminal work by Kearns (1998) introduced the statistical

query (SQ) algorithm framework, which provides a means of analyzing noise-tolerant algorithms.

Unlike traditional learning algorithms, SQ algorithms lack access to individual examples but can in-

stead make queries to an SQ oracle, which responds with noisy estimates of the queries over the pop-

ulation. Notably, many common learning algorithms, including noisy variants of gradient descent,

can be implemented within this framework. While SQ learning offers robust guarantees for learn-

ing in the presence of noise, there exist certain problems that are learnable from examples but not

efficiently learnable from statistical queries (Blum et al., 1994, 2003). One notable example of such

a problem is the parity learning problem, which possesses an SQ lower bound. This lower bound

can be leveraged to demonstrate the computational hardness of learning parities with gradient-based

algorithms (e.g., Shalev-Shwartz et al. (2017)).

6.3.1 Lower bound: a multi-resource hardness frontier

We show a version of the SQ lower bound in this section. Assume we optimize some model hθ,

where θ ∈ Rr (i.e., r parameters). Let ℓ be some loss function satisfying: ℓ′(ŷ, y) = −y + ℓ0(ŷ); for

example, one can choose ℓ2(ŷ, y) = 1
2(y− ŷ)2. Fix some hypothesis h, target f, a sample S ⊆ {±1}n

and distributionD over {±1}n. We denote the empirical loss by LS(h, f) = 1
|S|
∑

x∈S ℓ(h(x), f(x))

and the population loss by LD(h, f) := Ex∼D [ℓ(h(x), f(x))].

We consider SGD updates of the form:

θt+1 = θt − ηt (∇θ (LSt(hθt , f) + R(θt)) + ξt) ,

for some sample St, step size ηt, regularizerR(·), and adversarial noise ξt ∈ [−τ, τ]r. For normaliza-

tion, we assume that ‖∇hθ(x)‖∞ ≤ 1 for all θ and x ∈ X .

Denote by 0 the constant function, mapping all inputs to 0. Let θ⋆t be the following trajectory of
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SGD that is independent of the target. Define θ⋆t recursively s.t. θ⋆0 = θ0 and

θ⋆t+1 = θ⋆t − ηt∇θ
(
LD(hθ⋆t , 0) + R(θ⋆t )

)
Assumption 6.2 (Bounded error for gradient estimator). For all t, suppose that

∥∥∇LSt(hθ⋆t , 0)−∇LD(hθ⋆t , 0)
∥∥
∞ ≤ τ/2.

Remark: Ifm = Õ(1/τ2),* Assumption 6.2 is satisfied w.h.p. for: 1) St ∼ Dm (“online” SGD),

2) St = S for some S ∼ Dm (“offline” GD) and 3) St is a batch of sizem sampled uniformly at

random from S , where S ∼ DM andM ≥ m (“offline” SGD). Indeed, in all these cases we have

ESt

[
∇LSt(hθ⋆t , 0)

]
= ∇LD(hθ⋆t , 0), and the above follows from standard concentration bounds.

The lower bound in this section uses standard statistical query arguments to show that gradient-

based algorithms, without sufficient resources, will fail to learn (n, k)-parities. We therefore start by

stating the four types of resources that impact learnability:

• The number of parameters r – equivalently, the number of parallel “queries”.

• The number of gradient updates T – i.e. the serial running time of the training algorithm.

• The gradient precision τ – i.e. how close the empirical gradient is to the population gradient.

As discussed above, Õ(1/τ2) samples suffice to obtain such an estimator.

• The probability of success δ.

The following theorem ties these four resources together, showing that without a sufficient alloca-

tion of these resources, gradient descent will fail to learn:

*We use the notation Õ to hide logarithmic factors.
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Proposition 6.3. Assume that θ0 is randomly drawn from some distribution. For every r,T, δ, τ > 0,

if rT
τ2δ ≤

1
2
(n
k
)
, then there exists some (n, k)-parity s.t. with probability at least 1 − δ over the choice of

θ0, the first T iterates of SGD are statistically independent of the target function.

The proof follows standard SQ lower bound arguments (Kearns, 1998; Feldman, 2008), and

for completeness is given in Appendix C.2. The core idea of the proof is the observation that any

gradient step has very little correlation (roughly n−k) with most sparse-parity functions, and so there

exists a parity function that has small correlation with all steps. In this case, the noise can force the

gradient iterates to follow the trajectory θ⋆1 , . . . , θ⋆T, which is independent of the true target. We note

that, while the focus of this paper is on sparse parities, similar analysis applies for a broader class of

functions that are characterized by large SQ dimension (see Blum et al. (1994)).

Observe that there are various ways for an algorithm to escape the lower bound of Theorem 6.3.

We can scale a single resource with
(n
k
)
, keeping the rest small, e.g. by training a network of size nk,

or using a sample size of size nk. Crucially, we note the possibility of interpolating between these

extremes: one can spread this homogenized “cost” across multiple resources, by (e.g.) training a

network of size nk/2 using nk/2 samples. In the next section, we show how neural networks can be

tailored to solve the task in these interpolated resource scaling regimes.

6.3.2 Upper bounds: many ways to trade off the terms

As a warmup, we discuss some simple SQ algorithms that succeed in learning parities by properly

scaling the different resources. First, consider deterministic exhaustive search, which computes the

error of all possible (n, k)-parities, choosing the one with smallest error. This can be done with con-

stant τ (thus, sample complexity logarithmic in n), but takes T = Θ(nk) time. Since querying differ-

ent parities can be done in parallel, we can reduce the number of steps T by increasing the number

of parallel queries r. Alternatively, it is possible to query only a randomly selected subset of parities,
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which reduces the overall number of queries but increases the probability of failure.

The above algorithms give a rough understanding of the frontier of algorithms that succeed at

learning parities. However, at first glance, they do not seem to reflect algorithms used in deep learn-

ing, and are specialized to the parity problem. In this section, we will explore the ability of neural

networks to achieve similar tradeoffs between the different resources. In particular, we focus on

the interaction between sample complexity and network size, establishing learning guarantees with

interpolatable mixtures of these resources.

Before introducing our main positive theoretical results, we discuss some prior theoretical results

on learning with neural networks, and their limitations in the context of learning parities. Positive

results on learning with neural networks can generally be classified into two categories: those that

reduce the problem to convex learning of linear predictors over a predefined set of features (e.g. the

NTK), and those that involve neural networks departing from the kernel regime by modifying the

fixed features of the initialization, known as the feature learning regime.

Kernel regime. When neural networks trained with gradient descent stay close to their initial

weights, optimization behaves like kernel regression on the neural tangent kernel (Jacot et al., 2018;

Du et al., 2018): the resulting function is approximately of the form x 7→ 〈ψ(x),w〉, where ψ

is a data-independent infinite-dimensional embedding of the input, andw is some weighting of

the features. However, it has been shown that the NTK (more generally, any fixed kernel) cannot

achieve low ℓ2 error on the (n, k)-parity problem, unless the sample complexity grows as Ω(nk)

(see Kamath et al. (2020)). Thus, no matter how we scale the network size or training time, neural

networks trained in the NTK regime cannot learn parities with low sample complexity, and thus do

not enjoy the flexibility of resource allocation discussed above.
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Feature learning regime. Due to the limitation of neural networks trained in the kernel

regime, some works study learning in the “rich” regime, quantifying how hidden-layer features

adapt to the data. Among these, Barak et al. (2022) analyze a feature learning mechanism requiring

exceptionally small network width: SGD on 2-layer MLPs can solve the online sparse parity learning

problem with network width independent of n (dependent only on k), at the expense of requiring

a suboptimal (≈ nk) number of examples. This mechanism is Fourier gap amplification, by which

SGD through a single neuron σ(w⊤x) can perform feature selection in this setting, via exploiting a

small gap between the relevant and irrelevant coordinates in the population gradient. The proof of

Theorem 6.4 below relies on a similar analysis, extended to the offline regime (i.e., multiple passes

over a dataset of limited size).

“Data×model size” success frontier for sparsely-initializedMLPs

In this section, we analyze a 2-layer MLP with ReLU (σ(x) = max(0, x)) activation, trained with

batch (“offline”) gradient-descent over a sample S with ℓ2-regularized updates*:

θ(t+1) = (1− λ(t))θ(t) − η(t)∇LS(hθ(t))

We allow learning rates η, and weight decay coefficients λ to differ between layers and iterations.

For simplicity, we analyze the case where no additional noise is added to each update; however, we

believe that similar results can be obtained in the noisy case (e.g., using the techniques in Feldman

et al. (2017)). Finally, we focus on ReLU networks with s-sparse initialization of the first layer: every

weightwi has s randomly chosen coordinates set to 1, and the rest set to 0. Note that after initializa-

tion, all of the network’s weights are allowed to move, so sparsity is not necessarily preserved during

training.

*For simplicity, we do not assume adversarial noise in the gradients as in the lower bound. However,
similar results can be shown under bounded noise.
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Over-sparse initialization (s > Ω(k)). The following theorem demonstrates a “data×

width” success frontier when learning (n, k)-parities with sparsely initialized ReLUMLPs at sparsity

levels s > Ω(k).

Theorem 6.4. Let k be an even integer, and ε ∈ (0, 1/2). Assume that n ≥ Ω(1/ε2). For constants

c1, c2, c3, c4 depending only on k, choose the following: (1) sparsity level: s ≥ c1/ε2, for some odd s, (2)

width of the network: r = c2(n/s)k, (3) sample size: m ≥ c3(s/k)k−1n2 log n, and (4) number of

iterations: T ≥ c4/ε2. Then, for every (n, k)-parity distributionD, with probability at least 0.99

over the random samples and initialization, gradient descent with these parameter settings returns a

function hT s.t. LD(hT) ≤ ε.

Intuitively, by varying the sparsity parameter in Theorem 6.4, we obtain a family of algorithms

which smoothly interpolate between the small-data/large-width and large-data/small-width regimes

of tractability. First, consider a sparsity level linear in n (i.e. s = α · n). In this case, a small network

(with width r independent of the input dimension) is sufficient for solving the problem, but the

sample size must be large (Ω(nk+1)) for successful learning; this recovers the result of Barak et al.

(2022). At the other extreme, if the sparsity is independent of n, the sample complexity grows only

asO(n2 log n)*, but the requisite width becomes Ω(nk).

Proof sketch. The proof of Theorem 6.4 relies on establishing a Fourier anti-concentration condi-

tion, separating the relevant (i.e. indices in S) and irrelevant weights in the initial population gradi-

ent, similarly as the main result in Barak et al. (2022). When we initialize an s-sparse neuron, there

is a probability of≳ (s/n)k that the subset of activated weights contains the “correct” subset S. In

this case, to detect the subset S via the Fourier gap, it is sufficient to observe sk−1 examples instead

of nk−1. Initializing the neurons more sparsely makes it less probable to draw a lucky neuron, but

*We note that the additional n2 factor in the sample complexity can be removed if we apply gradient
truncation, thus allowing only a logarithmic dependence on n in the small-sample case.
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once we draw a lucky neuron, it requires fewer samples to find the right features. Thus, increasing

the width reduces overall sample complexity, by sampling a large number of “lottery tickets”.

Under-sparse initialization (s < k). The sparsity parameter can modulate similar data vs.

width tradeoffs for feature learning in the “under-sparse” regime. We provide a partial analysis for

this more challenging case, showing that one step of gradient descent can recover a correct subnet-

work. Appendix C.2.3 discusses the mathematical obstructions towards obtaining an end-to-end

guarantee of global convergence.

Theorem 6.5. For even k, s, sparsity level s < k, network width r = O((n/k)s), and ε-perturbed* s-

sparse random initialization scheme s.t. for every (n, k)-parity distributionD, with probability at least

0.99 over the choice of sample and initialization after one step of batch gradient descent (with gradient

clipping) with sample size m = O((n/k)k−s−1) and appropriate learning rate, there is a subnetwork

in the ReLUMLP that approximately computes the parity function.

Here, the sample complexity can be improved by a factor of ns, at the cost of requiring the width

to be ns times larger. The proof of Theorem 6.5 relies on a novel analysis of improved Fourier gaps

with “partial progress”: intuitively, if a neuron is randomly initialized with a subset of the relevant

indices S, it only needs to identify k−smore coordinates, inheriting the improved sample complexity

for the (n− s, k− s)-parity problem. Note that the probability of finding such a lucky neuron scales

as (n/k)−s, which governs how wide (number of lottery tickets) the network needs to be.

Remarks on the exact-sparsity regime. Our theoretical analyses do not extend straightfor-

wardly to the case of s = Θ(k). Observe that if the value of k is known, initializing a network of size

*For ease of analysis, we use a close variant of the sparse initialization scheme: s coordinates out of the n
coordinates are chosen randomly and set to 1, and the rest of the coordinates are set to ε < (n−s)−1. Without
the small norm dense component in the initialization, the population gradient will be 0 at initialization.
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r = Õ
(
nk
)
with sparsity s = k gives w.h.p. a subnetwork with good first-layer features at initial-

ization. We believe that with a proper choice of regularization and training scheme, it is possible to

show that such a network learns to select this subnetwork with low sample complexity. We leave the

exact details of this construction and end-to-end proofs for future work.

Analogous results for dense initialization schemes? We believe that the principle

of “parallel search with randomized per-subnetwork sample complexities” extends to other initial-

ization schemes (including those more commonly used in practice), and leads to analogous suc-

cess frontiers. To support this, our experiments investigate both sparse and uniform initialization,

with qualitatively similar findings. For dense initializations, the mathematical challenge lies in an-

alyzing the Fourier anti-concentration of general halfspaces (see the discussion and experiments in

Appendix C.1 of (Barak et al., 2022)). The axis-aligned inductive biases imparted by sparse initializa-

tion may also be of independent practical interest.

6.4 Experiments

A high-level takeaway from Section 5.4 is that when a learning problem is computationally difficult

but statistically easy, a complex frontier of resource tradeoffs can emerge; moreover, it is possible

to interpolate between extremes along this frontier using ubiquitous algorithmic choices in deep

learning, such as overparameterization, random initialization, and weight decay. In this section,

we explore the nature of the frontier with an empirical lens—first with end-to-end sparse parity

learning, then with natural tabular datasets.

6.4.1 Empirical Pareto frontiers for offline sparse parity learning

We launch a large-scale (∼200K GPU training runs) exploration of resource tradeoffs when train-

ing neural networks to solve the offline sparse parity problem. While Section 5.4 analyzes idealized
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Figure 6.2: Zoomed‐in views of the interactions between width, data, time, and luck. Left: Locations of these runs in
the larger parameter space. Center: Success probability vs. dataset size. In accordance with our theory, width buys luck,
and improves end‐to‐end sample efficiency, despite increasing the network’s capacity. Right: Number of iterations to
convergence vs. dataset size. We observe a data vs. time tradeoff in the grokking regime (at the edge of feasibility), as
well as a “sample‐wise double descent” performance drop with more data (which can also be seen in Figure 6.1, and
disappears with larger widths). Comparing dense vs. sparse initializations (upper vs. lower plots; sparse inits are colored
more brightly), we see computational and statistical benefits of the sparse initialization scheme from Section 6.3.2.

variants of SGD onMLPs which interpolate along the problem’s resource tradeoff frontier, in this

section we ask whether the same can be observed end-to-end with standard training and regulariza-

tion.

On various instances of the (n, k)-sparse parity learning problem, we train a 2-layer MLP with

identical hyperparameters, varying the network width r ∈ {10, 30, 100, . . . , 105} and the dataset

sizem ∈ {100, 200, 300, 600, 1000, . . . , 106}. Alongside standard algorithmic choices, we consider

one non-standard augmentation of SGD: the under-sparse initialization scheme from Section 6.3.2;

we have proven that these give rise to “lottery ticket” neurons which learn the influential coordinates

more sample-efficiently. Figure 6.1 (in the introduction) and Figure 6.2 illustrate our findings at a

high level; details and additional discussion are in Appendix C.3.1). We list our key findings below:

(1) A “success frontier”: large width can compensate for small datasets.We observe con-

vergence and perfect generalization whenm � nk. In such regimes, which are far outside
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the online setting considered by Barak et al. (2022), high-probability sample-efficient learn-

ing is enabled by large width. This can be seen in Figure 6.1 (left), and analogous plots in

Appendix C.3.1.

(2) Width is monotonically beneficial, and buys data, time, and luck. In this setting, increas-

ing the model size yields exclusively positive effects on success probability, sample efficiency,

and the number of serial steps to convergence (see Figure 6.2). This is a striking example

where end-to-end generalization behavior runs opposite to uniform convergence-based upper

bounds, which predict that enlarging the model’s capacity worsens generalization.

(3) Sparse axis-aligned initialization buys data, time, and luck. Used in conjunction with a

wide network, we observe that a sparse, axis-aligned initialization scheme yields strong im-

provements on all of these axes; see Figure 6.2 (bottom row). In smaller hyperparameter

sweeps, we find that s = 2 (i.e. initialize every hidden-layer neuron with a random 2-hot

weight vector) works best.

(4) Intriguing effects of dataset size. As we vary the sample sizem, we note two interesting

phenomena; see Figure 6.2 (right). The first is grokking (Power et al., 2021), which has been

previously documented in this setting (Barak et al., 2022; Merrill et al., 2023). This entails

a data vs. time tradeoff: for smallmwhere learning is marginally feasible, optimization re-

quires significantly more training iterations T. Our second observation is a “sample-wise

double descent” (Nakkiran et al., 2021): success probability and convergence times can

worsen with increasing data. Both of these effects are also evident in Figure 6.1).

Lottery ticket neurons. The above findings are consistent with the viewpoint taken by the

theoretical analysis, where randomly-initialized SGD plays the role of parallel search, and a large

width increases the number of random subnetworks available for this process—in particular, the
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“winning lottery ticket” neurons, for which feature learning occurs more sample-efficiently. To pro-

vide further evidence that sparse subnetworks are responsible for learning the parities, we perform a

smaller-scale study of network prunability in Appendix C.3.2.

6.4.2 Sample-efficient deep learning on natural tabular datasets

Sparse parity learning is a toy problem, in that it is defined by an idealized distribution, averting the

ambiguities inherent in reasoning about real-life datasets. However, due to its provable hardness

(Theorem 6.3, as well as the discussion in Section 6.2.1), it is amaximally hard toy problem in a

rigorous sense*. In this section, we perform a preliminary investigation of how the empirical and al-

gorithmic insights gleaned from Section 6.4.1 can be transferred to more realistic learning scenarios.

To this end, we use the benchmark assembled by Grinsztajn et al. (2022), a work which specifi-

cally investigates the performance gap between neural networks and tree-based classifiers (e.g. ran-

dom forests, gradient-boosted trees), and includes a standardized suite of 16 classification bench-

marks with numerical input features. The authors identify three common aspects of tabular† tasks

which present difficulties for neural networks, especially vanilla MLPs:

(i) The feature spaces are not rotationally invariant. In state-of-the-art deep learning, MLPs

are often tasked with function representation in rotation-invariant domains (token embed-

ding spaces, convolutional channels, etc.).

(ii) Many of the features are uninformative. In order to generalize effectively, especially from a

limited amount of data, it is essential to avoid overfitting to these features.

(iii) There are meaningful high-frequency/non-smooth patterns in the target function.

*Namely, its SQ dimension is equal to the number of hypotheses, which is what leads to Theorem 6.3.
†“Tabular data” refers to the catch-all term for data sources where each coordinate has a distinct semantic

meaning which is consistent across points.
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Figure 6.3: Analogous investigation of MLP width r and sparse initialization for real‐world tabular datasets (OpenML
benchmarks assembled by Grinsztajn et al. (2022)), varying the dataset sizem via downsampling. Large width and
sparse initialization tend to improve generalization, in accordance with the theory and experiments for synthetic parity
tasks. In some settings, our best MLPs outperform tuned random forests. Dotted lines denote the test errors reported
by Grinsztajn et al. (2022) of tuned MLPs and RFs on the full datasets. Full results on all 16 tasks are in Appendix C.3.3.

Combined with property (i), decision tree-based methods (which typically split on axis-

aligned features) can appear to have the ideal inductive bias for tabular modalities of data.

Noting that the sparse parity task possesses all three of the above qualities, we conduct a prelimi-

nary investigation on whether our empirical findings in the synthetic case carry over to natural tabu-

lar data. In order to study the impact of algorithmic choices (mainly width and sparse initialization)

on sample efficiency, we create low-data problem instances by subsampling varying fractions of each

dataset for training. Figure 6.3 provides a selection of our results. We note the following empirical

findings, which are the tabular data counterparts of results (2) and (3) in Section 6.4.1:

(2T) Wide networks generalize on small tabular datasets. Like in the synthetic experiments,

width yields nearly monotonic end-to-end benefits for learning. This suggests that the “par-

allel search + pruning” mechanisms analyzed in our paper are also at play in these settings.

In some (but not all) cases, these MLPs perform competitively with tuned tree-based classi-

fiers.

(3T) Sparse axis-aligned initialization sometimes improves end-to-end performance. This
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effect is especially pronounced on datasets which are downsampled to be orders of magni-

tude smaller. We believe that this class of drop-in replacements for standard initialization

merits further investigation, and may contribute to closing the remaining performance gap

between deep learning and tree ensembles on small tabular datasets.

6.5 Conclusion

We have presented a theoretical and empirical study of offline sparse parity learning with neural net-

works; this is a provably hard problem which admits a multi-resource lower bound in the SQmodel.

We have shown that the lower bound can be surmounted using varied mixtures of these resources,

which correspond to natural algorithmic choices and scaling axes in deep learning. By investigating

how these choices influence the empirical “success frontier” for this hard synthetic problem, we have

arrived at some promising improvements for MLPmodels of tabular data (namely, large width and

sparse initialization). These preliminary experiments suggest that a more intensive, exhaustive study

of algorithmic improvements for MLPs on tabular data has a chance of reaping significant rewards,

perhaps even surpassing the performance of decision tree ensembles.

Broader impacts and limitations. The nature of this work is foundational; the aim of

our theoretical and empirical investigations is to contribute to the fundamental understanding of

neural feature learning, and the influences of scaling relevant resources. A key limitation is that our

benchmarks on tabular data are only preliminary; it is a significant and perennial methodological

challenge to devise fair and comprehensive comparisons between neural networks and tree-based

learning paradigms.
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This chapter is based on “Feature Emergence viaMarginMaximization:

Case Studies in Algebraic Tasks” (Morwani et al., 2023b), written in col-

laboration with DepenMorwani, Costin-Andrei Oncescu, Rosie Zhao, and

ShamKakade.

7
Feature Emergence

Understanding the internal representations learned by neural networks is a cornerstone challenge

in the science of machine learning. While there have been significant recent strides in some cases to-

wards understanding how neural networks implement specific target functions, this paper explores

a complementary question – why do networks arrive at particular computational strategies? Our

inquiry focuses on the algebraic learning tasks of modular addition, sparse parities, and finite group

operations. Our primary theoretical findings analytically characterize the features learned by stylized
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neural networks for these algebraic tasks. Notably, our main technique demonstrates how the prin-

ciple of margin maximization alone can be used to fully specify the features learned by the network.

Specifically, we prove that the trained networks utilize Fourier features to performmodular addition

and employ features corresponding to irreducible group-theoretic representations to perform com-

positions in general groups, aligning closely with the empirical observations of Nanda et al. (2023)

and Chughtai et al. (2023). More generally, we hope our techniques can help to foster a deeper un-

derstanding of why neural networks adopt specific computational strategies.

7.1 Introduction

Opening the black box of neural networks has the potential to enable safer and more reliable de-

ployments, justifications for model outputs, and clarity on howmodel behavior will be affected

by changes in the input distribution. The research area of mechanistic interpretability (Olah et al.,

2020; Elhage et al., 2021; Olsson et al., 2022; Elhage et al., 2022) aims to dissect individual trained

neural networks in order to shed light on internal representations, identifying and interpreting sub-

circuits that contribute to the networks’ functional behavior. Mechanistic interpretability analyses

typically leave open the question of why the observed representations arise as a result of training.

Meanwhile, the theoretical literature on inductive biases in neural networks (Soudry et al., 2018;

Shalev-Shwartz & Ben-David, 2014; Vardi, 2023) aims to derive general principles governing which

solutions will be preferred by trained neural networks—in particular, in the presence of underspeci-

fication, where there are many distinct ways a network with a given architecture could perform well

on the training data. Most work on inductive bias in deep learning is motivated by the question of

understanding why networks generalize from their training data to unobserved test data. It can be

non-obvious how to apply the results from this literature to understand what solution will be found

when a particular architecture is trained on a particular type of dataset.
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In this work, we show that the empirical findings of Nanda et al. (2023) and Chughtai et al.

(2023), about the representations found by networks trained to perform finite group operations,

can be analytically explained by the inductive bias of the regularized optimization trajectory towards

margin maximization. Informally, the network maximizes the margin if it attains a given confi-

dence level on all the points in the dataset, with the smallest total parameter norm possible. Perhaps

surprisingly, the margin maximization property alone— typically used for the study of general-

ization— is sufficient to comprehensively and precisely characterize the richly structured features

that are actually learned by neural networks in these settings. Let’s begin by reviewing the case of

learning modular addition with neural networks, first studied in Power et al. (2021) in their study of

“grokking”.

Nanda et al.’s striking observations. Nanda et al. (2023) investigated the problem of

how neural networks learn modular addition (using a 1-layer transformer); they consider the prob-

lem of computing a + bmod p, where p is a prime number. The findings were unexpected and

intriguing: SGD not only reliably solves this problem (as originally seen in Power et al. (2021)) but

also consistently learns to execute a particular algorithm, as illustrated by the learned embedding

weights in Figure 7.1. This geometric algorithm simplifies the task to composing integer rotations

around a circle *.

The algorithm above fundamentally relies on the following identity: for any a, b ∈ Zp and

k ∈ Zp \ {0},

(a+ b)mod p = argmax
c∈Zp

{
cos
(
2πk(a+ b− c)

p

)}
.

*The algorithm identified by Nanda et al. (2023) can be seen as a real-valued implementation of the fol-
lowing procedure: Choose a fixed k. Embed a 7→ e2πika, b 7→ e2πikb, representing rotations by ka and kb.
Multiply these (i.e. compose the rotations) to obtain e2πik(a+b). Then, for each c ∈ Zp, multiply by e−2πikc

and take the real part to obtain the logit for c. Moreover, averaging the result over neurons with different
frequencies k results in destructive interference when c 6= a+ b, accentuating the correct answer.
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Figure 7.1: (a) Final trained embeddings and their Fourier power spectrum for a 1‐hidden layer ReLU network trained on
a mod‐71 addition dataset with L2 regularization. Each row corresponds to an arbitrary neuron from the trained net‐
work. The red dots represent the actual value of the weights, while the light blue interpolation is obtained by finding the
function over the reals with the same Fourier spectrum as the weight vector. (b) Similar plot for 1‐hidden layer quadratic
activation, trained with L2,3 regularization (Section 7.2) (c) For the quadratic activation, the network asymptotically
reaches the maximum L2,3 margin predicted by our analysis.
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This identity also leads to other natural algorithms (still relying on sinusoidal features) that are gen-

erally implemented by neural networks, as shown in Zhong et al. (2023).

These findings prompt the question: why does the network consistently prefer such Fourier-

based circuits, amidst other potential circuits capable of performing the same modular addition

function?

Our Contributions.

• We formulate general techniques for analytically characterizing the maximummargin solu-

tions for tasks exhibiting symmetry.

• For sufficiently wide one-hidden layer MLPs with quadratic activations, we use these tech-

niques to characterize the structure of the weights of max-margin solutions for certain alge-

braic tasks including modular addition, sparse parities and general group operations.

• We empirically validate that neural networks trained using gradient descent with small reg-

ularization approach the maximummargin solution (Theorem 7.1), and the weights of

trained networks match those predicted by our theory (Figure 7.1).

Our theorem for modular addition shows that Fourier features are indeed the global maximum

margin solution:

Informal Theorem (Modular addition). Consider a single hidden layer neural network of width

mwith x2 activations trained on the modular addition task (modulo p). Form ≥ 4(p − 1), any

maximummargin solution for the full population dataset satisfies the following:

• For every neuron, there exists a frequency such that the Fourier spectra of the input and

output weight vectors are supported only on that frequency.

• There exists at least one neuron of each frequency in the network.

94



Note that even with this activation function, there are solutions that fit all the data points, but

where the weights do not exhibit any sparsity in Fourier space—see Appendix D.4 for an example

construction. Such solutions, however, have lower margin and thus are not reached by training.

In the case of k-sparse parity learning with an xk-activation network, we showmargin maximiza-

tion implies that the weights assigned to all relevant bits are of the same magnitude, and the sign

pattern of the weights satisfies a certain condition.

For learning on the symmetric group (or other groups with real representations), we use the ma-

chinery of representation theory (Kosmann-Schwarzbach et al., 2010) to show that learned features

correspond to the irreducible representations of the group, as observed by Chughtai et al. (2023).

Two closely related works to ours are Gromov (2023) and Bronstein et al. (2022). Gromov

(2023) provides an analytic construction of various two-layer quadratic networks that can solve

the modular addition task. The construction used in the proof of Theorem 7.7 is a special case of

the given scheme. Bronstein et al. (2022) shows that all max margin solutions of a one-hidden-layer

ReLU network (with fixed top weights) trained on read-once DNFs have neurons which align with

clauses. However, their proof technique for characterizing max margin solutions is very different.

For more details, refer to Appendix 5.1.2.

Paper organization: In section 6.1, we delineate our contributions and discuss a few related

works. In section 7.2, we state preliminary definitions. In section 7.3, we sketch our theoretical

methodology, and state general lemmas which will be applied in all three case studies. In sections 7.4,

7.5, and 7.6, we use the above lemmas to characterize the max margin features for the modular ad-

dition, sparse parity and group operation tasks respectively. We discuss and conclude the paper in

section 5.5. Further related work, full proofs, hyperparameter choices, and additional experimental

results can be found in the Appendix.
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Figure 7.2: An illustration of an individual neuron φ({u, v,w}, a, b) (left) and the resulting one hidden layer neural
network f(θ, a, b) (right) with quadratic activations.

7.2 Preliminaries

In this work, we will consider one-hidden layer neural networks with homogeneous polynomial

activations, such as x2, and no biases. The network output for a given input xwill be represented as

f(θ, x), where θ ∈ Θ represents the parameters of the neural network. The homogeneity constant of

the network is defined as a constant ν such that for any scaling factor λ > 0, f(λθ, x) = λνf(θ, x) for

all inputs x.

In the case of 1-hidden layer networks, f can be further decomposed as:

f(θ, x) =
∑m

i=1 φ(ωi, x), where θ = {ω1, . . . , ωm}, φ represents an individual neuron within the

network, and ωi ∈ Ω denotes the weights from the input to the ith neuron and from the neuron

to the output. θ = {ω1, . . . , ωm} is said to have directional support on Ω′ ⊆ Ω if for all i ∈

{1, . . . ,m}, either ωi = 0 or λiωi ∈ Ω′ for some λi > 0. In this work, we will be primarily

concerned with networks that have homogeneous neurons, i.e, φ(λωi, x) = λνφ(ωi, x) for any

scaling constant λ > 0.

For Sections 7.4 and 7.6 corresponding to cyclic and general finite groups respectively, we will

consider neural networks with quadratic activations (Figure 7.2). A single neuron will be repre-
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sented as φ({u, v,w}, x(1), x(2)) = (u⊤x(1) + v⊤x(2))2w, where u, v,w ∈ Rd are the weights

associated with a neuron and x(1), x(2) ∈ Rd are the inputs provided to the network (note that

φ({u, v,w}, x(1), x(2)) ∈ Rd). For these tasks, we set d = |G|, whereG refers to either the cyclic

group or a general group. We will also consider the inputs x(1) and x(2) to be one-hot vectors, repre-

senting the group elements being provided as inputs. Thus, for given input elements (a, b), a single

neuron can be simplified as φ({u, v,w}, a, b) = (ua + vb)2w, where ua and vb represent the ath and

bth component of u and v respectively. Overall, the network will be given by

f(θ, a, b) =
m∑
i=1

φ({ui, vi,wi}, a, b),

with θ = {ui, vi,wi}mi=1 (note that f(θ, a, b) ∈ Rd) .

For Section 7.5, we will consider the (n, k)-sparse parity problem, where the parity is computed

on k bits out of n. For this task, we will consider a neural network with the activation function xk.

A single neuron within the neural network will be represented as φ({u,w}, x) = (u⊤x)kw, where

u ∈ Rn, w ∈ R2 are the weights associated with a neuron and x ∈ Rn is the input provided to the

network. The overall network will represented as

f(θ, x) =
m∑
i=1

φ({ui,wi}, x),

where θ = {ui,wi}mi=1.

For any vector v and k ≥ 1, ‖v‖k represents
(∑
|vi|k

)1/k. For a given neural network with param-
eters θ = {ωi}mi=1, the La,b norm of θ is given by ‖θ‖a,b =

(∑m
i=1 ‖ωi‖ba

)1/b. Here {ωi} represents
the concatenated vector of parameters corresponding to a single neuron.
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7.3 Theoretical Approach

Suppose we have a datasetD ⊆ X ×Y , a norm ‖ · ‖ and a class of parameterized functions {f(θ, ·) |

θ ∈ RU}, where f : RU × X → RY and Θ = {‖θ‖ ≤ 1}. We define the margin function

g : RU ×X × Y → R as being, for a given datapoint (x, y) ∈ D,

g(θ, x, y) = f(θ, x)[y]− max
y′∈Y\{y}

f(θ, x)[y′].

Then, the margin of the datasetD is given by h : RU → R defined as

h(θ) = min
(x,y)∈D

g(θ, x, y).

Similarly, we define the normalized margin for a given θ as h(θ/‖θ‖).

We train using the regularized objective

Lλ(θ) =
1
|D|

∑
(x,y)∈D

l(f(θ, x), y) + λ‖θ‖r

where l is the cross-entropy loss. Let θλ ∈ argminθ∈RU Lλ(θ) be a minimum of this objective, and

let γλ = h(θλ/‖θλ‖) be the normalized margin of θλ. Let γ∗ = maxθ∈Θ h(θ) be the maximum

normalized margin. The following theorem ofWei et al. (2019b) states that, when using vanishingly

small regularization λ, the normalized margin of global optimizers ofLλ converges to γ∗.

Theorem 7.1 (Wei et al. (2019b), Theorem 4.1). For any norm ‖ · ‖, a fixed r > 0 and any homoge-

neous function f with homogeneity constant ν > 0, if γ∗ > 0, then limλ→0 γλ = γ∗.

This provides the motivation behind studying maximummargin classifiers as a proxy for under-

standing the global minimizers ofLλ as λ → 0. Henceforth, we will focus on characterizing the

maximummargin solution: Θ∗ := argmaxθ∈Θ h(θ).
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Note that the maximummargin γ∗ is given by

γ∗ = max
θ∈Θ

min
(x,y)∈D

g(θ, x, y)

= max
θ∈Θ

min
q∈P(D)

E
(x,y)∼q

[g(θ, x, y)]

where q represents a distribution over data points inD. The primary approach in this work for

characterizing the maximummargin solution is to exhibit a pair (θ∗, q∗) such that

q∗ ∈ argmin
q∈P(D)

E
(x,y)∼q

[g(θ∗, x, y)] (7.1)

θ∗ ∈ argmax
θ∈Θ

E
(x,y)∼q∗

[g(θ, x, y)] (7.2)

That is, q∗ is one of the minimizers of the expected margin with respect to θ∗ and θ∗ is one of the

maximizers of the expected margin with respect to q∗. The lemma below uses the max-min inequal-

ity (Boyd & Vandenberghe, 2004) to show that exhibiting such a pair is sufficient for establishing

that θ∗ is indeed a maximummargin solution. The proof for the lemma can be found in Appendix

D.5.

Lemma 7.2. If a pair (θ∗, q∗) satisfies Equations 7.1 and 7.2, then

θ∗ ∈ argmax
θ∈Θ

min
(x,y)∈D

g(θ, x, y)

In the following subsections, we will describe our approach for finding such a pair for 1-hidden

layer homogeneous neural networks. Furthermore, we will show how exhibiting just a single pair of

the above form can enable us to characterize the set of allmaximummargin solutions. We start off

with the case of binary classification, and then extend the techniques to multi-class classification.
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7.3.1 Binary Classification

In the context of binary classification where |Y| = 2, the margin function g for a given datapoint

(x, y) ∈ D is given by

g(θ, x, y) = f(θ, x)[y]− f(θ, x)[y′],

where y′ 6= y. For 1-hidden layer neural networks, by linearity of expectation, the expected margin is

given by

E
(x,y)∼q

[g(θ, x, y)] =
m∑
i=1

E
(x,y)∼q

[
φ(ωi, x)[y]− φ(ωi, x)[y′]

]
,

where y′ 6= y and θ = {ωi}mi=1. Since the expected margin of the network decomposes into the sum

of expected margin of individual neurons, finding a maximum expected margin network simplifies

to finding maximum expected margin neurons. Denoting ψ(ω, x, y) = φ(ω, x)[y]− φ(ω, x)[y′], the

following lemma holds:

Lemma 7.3. LetΘ = {θ : ‖θ‖a,b ≤ 1} andΘ∗
q = argmaxθ∈Θ E(x,y)∼q [g(θ, x, y)]. Similarly, let

Ω = {ω : ‖ω‖a ≤ 1} andΩ∗
q = argmaxω∈Ω E(x,y)∼q [ψ(ω, x, y)]. For binary classification:

• Single neuron optimization: Any θ ∈ Θ∗
q has directional support only onΩ∗

q .

• Combining neurons: If b = ν (the homogeneity constant of the network) and ω∗1 , ..., ω∗m ∈

Ω∗
q , then for any neuron scaling factors

∑
λνi = 1, λi ≥ 0, we have that θ = {λiω∗i }mi=1

belongs toΘ∗
q .

The proof for the above lemma can be found in Appendix D.5.1.

To find a (θ∗, q∗) pair, we will start with a guess for q∗ (which will be the uniform distribution in

our case as the datasets are symmetric). Then, using the first part of Lemma 7.3, we will find all neu-

rons which can be in the support of θ∗ satisfying Equation 7.2 for the given q∗. Finally, for specific
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norms of the form ‖ · ‖a,ν, we will combine the obtained neurons using the second part of Lemma

7.3 to obtain a θ∗ such that q∗ satisfies Equation 7.1.

We think of (θ∗, q∗) as a “certificate pair”. By just identifying this single solution, we can charac-

terize the set of allmaximummargin solutions. Denoting spt(q) = {(x, y) ∈ D | q(x, y) > 0}, the

following lemma holds:

Lemma 7.4. LetΘ = {θ : ‖θ‖a,b ≤ 1} andΘ∗
q = argmaxθ∈Θ E(x,y)∼q [g(θ, x, y)]. Similarly,

letΩ = {ω : ‖ω‖a ≤ 1} andΩ∗
q = argmaxω∈Ω E(x,y)∼q [ψ(ω, x, y)]. For the task of binary

classification, if there exists {θ∗, q∗} satisfying Equation 7.1 and 7.2, then any

θ̂ ∈ argmax
θ∈Θ

min
(x,y)∈D

g(θ, x, y)

satisfies the following:

• θ̂ has directional support only onΩ∗
q∗ .

• For any (x, y) ∈ spt(q∗), f(θ̂, x, y)− f(θ̂, x, y′) = γ∗, where y′ 6= y; i.e., all points in the support

of q∗ are “on the margin” for any maximummargin solution.

The proof for the above lemma can be found in Appendix D.5.1.

Thus, we can say that the neurons found by Lemma 7.3 are indeed the exhaustive set of neurons

for any maximummargin network. Moreover, any maximummargin solution will have the support

of q∗ on the margin.
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7.3.2 Multi-Class Classification

The modular addition and general finite group tasks are multi-class classification problems. For

multi-class classification, the margin function g for a given datapoint (x, y) ∈ D is given by

g(θ, x, y) = f(θ, x)[y]− max
y′∈Y\{y}

f(θ, x)[y′],

For 1-hidden layer networks, the expected margin is given by

E
(x,y)∼q

[g(θ, x, y)] = E
(x,y)∼q

[ m∑
i=1

φ(ωi, x)[y]− max
y′∈Y\{y}

m∑
i=1

φ(ωi, x)[y′]

]
,

Here, due to the max operation, we cannot swap the summation and expectation, and thus the

expected margin of the network does not decompose into the expected margins of the neurons as it

did in the binary classification case.

To circumvent this issue, we will introduce the notion of class-weighted margin. Consider some

τ : D→ Δ(Y) that assigns a weighting of incorrect labels to every datapoint. For any (x, y) ∈ D, let

τ satisfy the properties that
∑

y′∈Y\{y} τ(x, y)[y′] = 1 and τ(x, y)[y′] ≥ 0 for all y′ ∈ Y . Using this,

we define the class-weighted margin g′ for a given datapoint (x, y) ∈ D as

g′(θ, x, y) = f(θ, x)[y]−
∑

y′∈Y\{y}

τ(x, y)[y′]f(θ, x)[y′].

Note that g′(θ, x, y) ≥ g(θ, x, y) as g′ replaces the max by a weighted sum. Moreover, by linearity

of expectation we can say that

E
(x,y)∼q

[g′(θ, x, y)] =
m∑
i=1

E
(x,y)∼q

φ(ωi, x)[y]− ∑
y′∈Y\{y}

τ(x, y)[y′]φ(ωi, x)[y′]

 ,
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Denoting ψ′(ω, x, y) = φ(ω, x)[y] −
∑

y′∈Y\{y}
τ(x, y)[y′]φ(ω, x)[y′], a result analogous to

Lemma 7.3 holds for the class-weighted margin (proof can be found in Appendix D.5.2):

Lemma 7.5. LetΘ = {θ : ‖θ‖a,b ≤ 1} andΘ′∗
q = argmaxθ∈Θ E(x,y)∼q [g′(θ, x, y)]. Similarly, let

Ω = {ω : ‖ω‖a ≤ 1} andΩ′∗
q = argmaxω∈Ω E(x,y)∼q [ψ′(ω, x, y)]. Then:

• Single neuron optimization: Any θ ∈ Θ′∗
q has directional support only onΩ′∗

q .

• Combining neurons: If b = ν and ω∗1 , ..., ω∗m ∈ Ω′∗
q , then for any neuron scaling factors∑

λνi = 1, λi ≥ 0, we have that θ = {λiω∗i }mi=1 belongs toΘ′∗
q .

The above lemma helps us characterize Θ′∗
q for a given distribution q. Thus, applying it to a given

q∗, we can find

θ∗ ∈ argmax
θ∈Θ

E
(x,y)∼q∗

[
g′(θ, x, y)

]
. (7.3)

To further ensure that θ∗ also satisfies the corresponding equation for g (i.e., Equation 7.2) we

will consider the following condition:

C.1 For any (x, y) ∈ spt(q∗), it holds that g′(θ∗, x, y) = g(θ∗, x, y). This translates to any label

with non-zero weight being one of the incorrect labels where f is maximized: {ℓ ∈ Y \ {y} :

τ(x, y)[ℓ] > 0} ⊆ argmax
ℓ∈Y\{y}

f(θ∗, x)[ℓ].

The main lemma used for finding the maximummargin solutions for multi-class classification is

stated below:

Lemma 7.6. LetΘ = {θ : ‖θ‖a,b ≤ 1} andΘ′∗
q = argmaxθ∈Θ E(x,y)∼q [g′(θ, x, y)]. Similarly,

letΩ = {ω : ‖ω‖a ≤ 1} andΩ′∗
q = argmaxω∈Ω E(x,y)∼q [ψ′(ω, x, y)]. If ∃{θ∗, q∗} satisfying

Equations 7.1 and 7.3, and C.1 holds, then:
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Figure 7.3: A schematic illustration of the relation between class‐weighted margin g′ and maximum margin g.

• θ∗ ∈ argmaxθ∈Θ g(θ, x, y)

• Any θ̂ ∈ argmaxθ∈Θmin(x,y)∈D g(θ, x, y) satisfies the following:

– θ̂ has directional support only onΩ′∗
q∗ .

– For any (x, y) ∈ spt(q∗), f(θ̂, x, y) − maxy′∈Y\{y} f(θ̂, x, y′) = γ∗, i.e, all points in the

support of q∗ are on the margin for any maximummargin solution.

The first part of the above lemma follows from the fact that g′(θ, x, y) ≥ g(θ, x, y). Thus, any

maximizer of g′ satisfying g′ = g is also a maximizer of g (See Figure 7.3). The second part states

that the neurons found using Lemma 7.5 are indeed the exhaustive set of neurons for any maximum

margin network. Moreover, any maximummargin solution has the support of q∗ on margin. The

proof for the lemma can be found in Appendix D.5.2.

Overall, to find a (θ∗, q∗) pair, we will start with a guess of q∗ (which will be uniform in our case

as the datasets are symmetric) and a guess of the weighing τ (which will be uniform for the modular

addition case). Then, using the first part of Lemma 7.5, we will find all neurons which can be in the

support of θ∗ satisfying Equation 7.3 for the given q∗. Finally, for specific norms of the form ‖ · ‖a,ν,

we will combine the obtained neurons using the second part of Lemma 7.5 to obtain a θ∗ such that

it satisfiesC.1 and q∗ satisfies Equation 7.1. Thus, we will primarily focus on maximummargin
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with respect to L2,ν norm in this work.

7.3.3 Blueprint for the case studies

In each case study, we want to find a certificate pair: a network θ∗ and a distribution on the input

data points q∗, such that Equation 7.1 and 7.2 are satisfied. Informally, these are the main steps

involved in the proof approach:

1. As the datasets we considered are symmetric, we consider q∗ to be uniformly distributed on

the input data points.

2. Using the Single neuron optimization part of Lemma 7.5, we find all neurons that max-

imize the expected class-weighted margin. Only these neurons can be part of a network θ∗

satisfying Equation 7.3.

3. Using theCombining neurons part of Lemma 7.5, we combine the above neurons into a

network θ∗ such that

(a) All input points are on the margin, i.e, q∗ satisfies Equation 7.1.

(b) The class-weighted margin is equal to the maximummargin, i.e, θ∗ satisfiesC.1.

Then, using Lemma 7.6, we can say that the network θ∗ maximizes the margin.

7.4 Cyclic groups (modular addition)

For a prime p > 2, let Zp denote the cyclic group on p elements. For a function f : Zp → C, the

discrete Fourier transform of f at a frequency j ∈ Zp is defined as

f̂(j) :=
∑
k∈Zp

f(k) exp(−2πi · jk/p).
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(a) Initial distribution
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(b) ReLU activation
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(c)Quadratic activation

Figure 7.4: The maximum normalized power of the embedding vector of a neuron is given bymaxi |û[i]|2/(
∑
|û[j]|2),

where û[i] represents the ith component of the Fourier transform of u. (a) Initially, the maximum power is randomly
distributed. (b) For 1‐hidden layer ReLU network trained with L2 regularization, the final distribution of maximum power
seems to be concentrated around 0.9, meaning neurons are nearly 1‐sparse in frequency space but not quite. (c) For
1‐hidden layer quadratic network trained with L2,3 regularization, the final maximum power is almost exactly 1 for all
the neurons, so the embeddings are 1‐sparse in frequency space, as predicted by the maximum margin analysis.

Note that we can treat a vector v ∈ Cp as a function v : Zp → C, thereby endowing it with a

Fourier transform. Consider the input spaceX := Zp × Zp and output spaceY := Zp. Let the

datasetDp := {((a, b), a+ b) : a, b ∈ Zp}.

Theorem 7.7. Consider one-hidden layer networks f(θ, a, b) of the form given in section 7.2 with

m ≥ 4(p− 1) neurons. The maximum L2,3-margin of such a network on the dataset Dp is:

γ∗ =
√

2
27
· 1
p1/2(p− 1)

.

Any network achieving this margin satisfies the following conditions:

1. for each neuron φ({u, v,w}; a, b) in the network, there exists a scaling constant λ ∈ R and a

frequency ζ ∈ {1, . . . , p−12 } such that

u(a) = λ cos(θ∗u + 2πζa/p)

v(b) = λ cos(θ∗v + 2πζb/p)

w(c) = λ cos(θ∗w + 2πζc/p)
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for some phase offsets θ∗u, θ∗v , θ∗w ∈ R satisfying θ∗u + θ∗v = θ∗w.

2. For every frequency ζ ∈ {1, . . . , p−12 }, at least one neuron in the network uses this frequency.

Proof outline. Following the blueprint described in the previous section, we first prove that neu-

rons of the form above (and only these neurons) maximize the expected class-weighted margin

Ea,b[ψ′(u, v,w)]with respect to the uniform distribution q∗ = unif(X ). We will use the uniform

class weighting: τ(a, b)[c′] := 1/(p − 1) for all c′ 6= a + b. As a crucial intermediate step, we prove

that

E
a,b
[ψ′({u, v,w}, a, b)] = 2

(p− 1)p2
∑
j̸=0

û(j)v̂(j)ŵ(−j),

Maximizing the above expression subject to the max-margin norm constraint∑
j̸=0
(
|û(j)|2 + |̂v(j)|2 + |ŵ(j)|2

)
≤ 1 leads to sparsity in Fourier space.

Then, we describe a network θ∗ (of width 4(p − 1)) composed of such neurons, and that satisfies

Equation 7.1 and conditionC.1. By Lemma 7.6, part (1) of Theorem 7.7 will follow, and θ∗ will

be an example of a max-margin network. Finally, in order to show that all frequencies are used, we

introduce the multidimensional discrete Fourier transform. We prove that each neuron only con-

tributes a single frequency to the multi-dimensional DFT of the network; but that second part of

Lemma 7.6 implies that all frequencies are present in the full network’s multidimensional DFT. The

full proof can be found in Appendix D.6.

As demonstrated in Figure 5.1 and 7.4, empirical networks trained with gradient descent with

L2,3 regularization approach the theoretical maximummargin, and have single frequency neurons.

Figure D.1 in the Appendix verifies that all frequencies are present in the network.
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Figure 7.5: Final neurons with highest norm and the evolution of normalized L2,5 margin over training of a 1‐hidden
layer quartic network (activation x4) on (10, 4) sparse parity dataset with L2,5 regularization. The network approaches
the theoretical maximum margin that we predict.

7.5 Sparse parity

In this section, we will establish the max margin features that emerge when training a neural net-

work on the sparse parity task. Consider the (n, k)-sparse parity problem, where the parity is com-

puted over k bits out of n. To be precise, consider inputs x1, ..., xn ∈ {±1}. For a given subset

S ⊆ [n] such that |S| = k, the parity function is given by Πj∈Sxj.

Theorem 7.8. Consider a single hidden layer neural network of width m with the activation function

given by xk, i.e, f(x) =
∑m

i=1(u⊤i x)kwi, where ui ∈ Rn and wi ∈ R2, trained on the (n, k)−sparse

parity task. Without loss of generality, assume that the first coordinate of wi corresponds to the output

for class y = +1. Denote the vector [1,−1] by bbb. Provided m ≥ 2k−1, the L2,k+1 maximummargin is:

γ∗ = k!
√
2(k+ 1)−(k+1).

Any network achieving this margin satisfies the following conditions:

1. For every i having ‖ui‖ > 0, spt(ui) = S, wi lies in the span of bbb and ∀j ∈ S, |ui[j]| = ‖wi‖.
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(d) Final Maximum Power Distribution

Figure 7.6: This figure demonstrates the training of a 1‐hidden layer quadratic network on the symmetric group S5
with L2,3 regularization. (a) Evolution of the normalized L2,3 margin of the network with training. It approaches the
theoretical maximum margin that we predict. (b) Distribution of neurons spanned by a given representation. Higher
dimensional representations have more neurons as given by our construction. (c) and (d) Maximum normalized power is
given bymaxi û[i]2/(

∑
j û[j]

2) where û[i] refers to the component of weight vector u spanned by the basis vectors
corresponding to ith representation. This is random at initialization, but towards the end of training, all neurons are
concentrated in a single representation, as predicted by maximum margin.

2. For every i,
(
Πj∈Sui[j]

)
(w⊤

i bbb) ≥ 0.

As shown in Figure 7.5, a network trained with gradient descent and L2,k+1 regularization ex-

hibits these properties, and approaches the theoretically-predicted maximummargin. The proof for

Theorem 7.8 can be found in Appendix D.7.
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7.6 Finite Groups with Real Representations

We conclude our case study on algebraic tasks by studying group composition on finite groupsG.

Namely, here we setX := G × G and output spaceY := G. Given inputs a, b ∈ Gwe train the

network to predict c = ab. We wish to characterize the maximummargin features similarly to the

case of modular addition; here, our analysis relies on principles from group representation theory.

7.6.1 Brief Background and Notation

The following definitions and notation are essential for stating our main result, and further results

are presented with more rigor in Appendix D.8.

A real representation of a groupG is a finite dimensional real vector spaceV = Rd and a group

homomorphism (i.e. a map preserving the group structure)R : G → GL(V). We denote such a

representation by (R,V) or just byR. The dimension of a representationR, denoted dR, is the di-

mension ofV. Our analysis focuses on unitary, irreducible, real representations ofG. The number

of such representations is precisely equal to the number of conjugacy classes ofGwhere the conju-

gacy class of a ∈ G is defined as C(a) = {gag−1 : g ∈ G}.

A quantity important to our analysis is the character of a representationR, denoted χR : G → R

given by χR(g) = tr(R(g)). It was previously observed by Chughtai et al. (2023) that one-layer

ReLUMLPs and transformers learn the task by mapping inputs a, b to their respective matri-

cesR(a),R(b) for some irreducible representationR and performing matrix multiplication with

R(c−1) to output logits proportional to the character χR(abc
−1) = tr(R(a)R(b)R(c−1)), which is

in particular maximized when c = ab. They also find evidence of network weights being spanned by

representations, which we establish rigorously here.

For each representationRwe will consider the |G|-dimensional vectors by fixing one index in the

matrices outputted byR, i.e. vectors (R(g)(i,j))g∈G for some i, j ∈ [dR]. For eachR, this gives dR2
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vectors. LettingK be the number of conjugacy classes andR1, . . . ,RK be the corresponding irre-

ducible representations, since |G| =
∑K

n=1 d2Rn
, taking all such vectors for each representation will

form a set of |G| vectors which we will denote ρ1, ..., ρ|G| (ρ1 is always the vector corresponding to

the trivial representation). These vectors are in fact orthogonal, which follows from orthogonality

relations of the representation matrix elementsR(g)(i,j) (see Appendix D.8 for details). Thus, we re-

fer to this set of vectors as basis vectors forR|G|. One can ask whether the maximummargin solution

in this case has neurons which are spanned only by basis vectors corresponding to a single represen-

tationR, and if all representations are present in the network— the analogous result we obtained for

modular addition in Theorem 7.7. We show that this is indeed the case.

7.6.2 TheMain Result

Our main result characterizing the max margin features for group composition is as follows.

Theorem 7.9. Consider a single hidden layer neural network of width m with quadratic activa-

tion trained on learning group composition for G with real irreducible representations. Provided

m ≥ 2
∑K

n=2 dRn
3 and

∑K
n=2 dRn

1.5χRn
(C) < 0 for every non-trivial conjugacy class C, the L2,3

maximummargin is:

γ∗ =
2

3
√
3|G|

1(∑K
n=2 d

2.5
Rn

) .
Any network achieving this margin satisfies the following conditions:

1. For every neuron, there exists a non-trivial representation such that the input and output weight

vectors are spanned only by that representation.

2. There exists at least one neuron spanned by each representation (except for the trivial represen-

tation) in the network.

The complete proof for Theorem 7.9 can be found in Appendix D.9.
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The condition that
∑K

n=2 dRn
1.5χRn

(C) < 0 for every non-trivial conjugacy class C holds for the

symmetric group Sk up until k = 5. In this case, as shown in Figure 7.6, network weights trained

with gradient descent and L2,3 regularization exhibit similar properties. The maximummargin of

the network approaches what we have predicted in theory. Analogous results for training on S3 and

S4 in Figures D.2 and D.3 are in the Appendix.

Although Theorem 7.9 does not apply to all finite groups with real representations, it can be

extended to apply more generally. The theorem posits that every representation is present in the

network, and every conjugacy class is present on the margin. Instead, for general finite groups, each

neuron still satisfies the characteristics of max margin solutions in that it is only spanned by one

non-trivial representation, but only a subset of representations are present in the network; more-

over, only a subset of conjugacy classes are present on the margin. More details are given in Ap-

pendix D.9.2.

7.7 Discussion

We have shown that the simple condition of margin maximization can, in certain algebraic learning

settings, imply very strong conditions on the representations learned by neural networks. The math-

ematical techniques we introduce are general, and may be able to be adapted to other settings than

the ones we consider. Our proof holds for the case of x2 activations (xk activations, in the k-sparse

parity case) and L2,ν norm, where ν is the homogeneity constant of the network. Empirical findings

suggest that the results may be transferable to other architectures and norms. In general, we think

explaining how neural networks adapt their representations to symmetries and other structure in

data is an important subject for future theoretical and experimental inquiry.
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This chapter is based on “The Evolution of Statistical Induction Heads:

In-Context LearningMarkov Chains” (Edelman et al., 2024b), written in

collaboration with Ezra Edelman, Surbhi Goel, EranMalach, and Nikolaos

Tsilivis .

8
Induction Heads

Large language models have the ability to generate text that mimics patterns in their inputs. We in-

troduce a simple Markov Chain sequence modeling task in order to study how this in-context learn-

ing (ICL) capability emerges. In our setting, each example is sampled from aMarkov chain drawn

from a prior distribution over Markov chains. Transformers trained on this task form statistical in-

duction headswhich compute accurate next-token probabilities given the bigram statistics of the

context. During the course of training, models pass through multiple phases: after an initial stage
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in which predictions are uniform, they learn to sub-optimally predict using in-context single-token

statistics (unigrams); then, there is a rapid phase transition to the correct in-context bigram solu-

tion. We conduct an empirical and theoretical investigation of this multi-phase process, showing

how successful learning results from the interaction between the transformer’s layers, and uncov-

ering evidence that the presence of the simpler unigram solution may delay formation of the final

bigram solution. We examine how learning is affected by varying the prior distribution over Markov

chains, and consider the generalization of our in-context learning of Markov chains (ICL-MC) task

to n-grams for n > 2.

8.1 Introduction

Large language models (LLMs) exhibit a remarkable ability to perform in-context learning (ICL):

learning from patterns in their input context (Brown et al., 2020; Dong et al., 2022). The ability of

LLMs to adaptively learn from context is profoundly useful, yet the underlying mechanisms of this

emergent capability are not fully understood.

In an effort to better understand ICL, some recent works propose to study ICL in controlled

synthetic settings—in particular, training transformers on mathematically defined tasks which

require learning from the input context. For example, a recent line of works studies the ability

of transformers to perform ICL of standard supervised learning problems such as linear regres-

sion (Garg et al., 2022; Akyürek et al., 2022; Li et al., 2023; Wu et al., 2023). Studying these well-

understood synthetic learning tasks enables fine-grained control over the data distribution, allows

for comparisons with established supervised learning algorithms, and facilitates the examination

of the in-context “algorithm” implemented by the network. That said, these supervised settings

are reflective specifically of few-shot learning, which is only a special case of the more general phe-

nomenon of networks incorporating patterns from their context into their predictions. A few re-

114



0

1

2

0.2

0.5
0.5

0.3

0.5

0.4

0.1
0.0

0.5

1 0 1 1 2 0 2 1 1 0 1 1 1 1 2 0

0

1

2

0.4

0.1
0.0

0.3

0.3

0.9

0.3

0.1
0.6

0 0 0 1 0 2 0 2 0 2 0 2 2 0 0 0

0 25 50 75 100 125
Number of Examples Seen (Thousands)

0.00

0.05

0.10

0.15

0.20

0.25

KL
-D

iv
(D

ist
rib

ut
io

n|
|m

od
el

)

Transformer KL-Divergence: 3 Symbols
Uniform
Unigram
Bigram

Figure 8.1: (left) We train small transformers to perform in‐context learning of Markov chains (ICL‐MC). Each training
sequence is generated by sampling a transition matrix from a prior distribution, and then sampling a sequence from
this Markov chain. (right) Distance of a transformer’s output distribution to several well‐defined strategies over the
course of training on our in‐context Markov chain task. The model passes through three stages: (1) predicting a uniform
distribution, (2) predicting based on in‐context unigram statistics, (3) predicting based on in‐context bigram statistics.
Shading is based on the minimum of the curves.

cent works (Bietti et al., 2023; Xie et al., 2022) go beyond the case of cleanly separated in-context

inputs and outputs, studying in-context learning on distributions based on discrete stochastic pro-

cesses.

The goal of this work is to propose and analyze a simple synthetic setting for studying ICL. To

achieve this, we consider n-grammodels (Brown et al., 1992; Shannon, 1948; Chomsky, 1956), one

of the simplest and oldest methods for language modeling. An n-gram language model predicts the

probability of a token based on the preceding n − 1 tokens, using fixed-size chunks (n-grams) of

text data to capture linguistic patterns. Our work studies ICL of n-grammodels, where the net-

work needs to compute the conditional probability of the next token based on the statistics of the

tokens observed in the input context, rather than on the statistics of the entire training data. We

mainly focus on the simple case of n = 2; i.e., bigrammodels, which can be represented as Markov

chains. We therefore consider ICL of Markov chains (ICL-MC): we train a two layer attention-only

transformer on sequences of tokens, where each sequence is produced by a different Markov chain,

generated using a different transition matrix (see Figure 8.1 (left)).
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By studying ICL-MC, we are able to replicate and study multiple phenomena that have been ob-

served in ICL for LLMs, and identify new ones. We demonstrate our findings using a combination

of empirical observations on transformers trained from scratch on ICL-MC and theoretical analysis

of a simplified linear transformer. Our key findings are summarized below:

• Transformers learn statistical induction heads to optimally solve ICL-MC. Prior work study-

ing ICL in transformers revealed the formation of induction heads (Elhage et al., 2021), a circuit

that looks for recent occurrence(s) of the current token, and boosts the probabilities of tokens

which followed in the input context. We show that in order to solve ICL-MC, transformers learn

statistical induction heads that are able to compute the correct conditional (posterior) probabil-

ity of the next token given all previous occurrences of the prior token (see the attention patterns

in Figure 8.2). We show that these statistical induction heads lead to the transformers achieving

performance approaching that of the Bayes-optimal predictor.

• Transformers learn predictors of increasing complexity and undergo a phase transition

when increasing complexity.We observe that transformers display phase transitionswhen learn-

ing Markov chains—learning appears to be separated into phases, with fast drops in loss between

the phases. We are able to show that different phases correspond to learning models of increased

complexity—unigrams, then bigrams (see Figure 8.1)—and characterize the transition between

the phases. We also consider the n-gram generalization of our setting where the next token is gen-

erated based on the previous n− 1 tokens.

• Simplicity bias may slow down learning.We provide evidence that the model’s inherent bias

towards simpler solutions (in particular, in-context unigrams) causes learning of the optimal solu-

tion to be delayed. Changing the distribution of the in-context examples to remove the usefulness

of in-context unigrams leads to faster convergence, even when evaluated on the original distribu-

tion.
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Attention Patterns

Figure 8.2: Attention for a fixed input at various time steps in training. These diagrams show where the attention heads
are attending to at each layer. In the second layer, only the last token attention is shown. Tokens on top attend to
tokens below them. Attention starts off uniform, but by the end of training, the layers are clearly acting the same as
the induction head construction. Specifically, in the first layer each token is attending to the previous token. In the
second layer, the current token, a 2, is attending to tokens that followed 2s, allowing bigram statistics to be calculated.
Figure E.5 shows the full attention matrices as heatmaps.

• Alignment of layers is crucial.We show that the transition from a phase of learning the simple-

but-inadequate solution to the complex-and-correct solution happens due to an alignment be-

tween the layers of the model: the learning signal for the first layer is tied to the extent to which

the second layer approaches its correct weights.

• Alternating patterns in positional embeddings.When we train transformers with relative po-

sition embeddings, the theoretical optimization analysis of our simplified model indicates that

along the way to the correct solution, the first layer develops a bias toward looking back an odd

number of tokens, even though only looking back by 1 is clearly useful. We empirically observe

this curious phenomenon in real transformers as well.

8.1.1 RelatedWork

In-context Learning. Recently, many works have focused on understanding how ICL emerges

in language models. In (Chan et al., 2022), the authors discuss how properties of the data distribu-

tion promote ICL, with a focus on empirical observations. Xie et al. (2022) studies a data model

similar to ours, demonstrating that language models trained on HiddenMarkovModels (HMMs)
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can learn in-context HMMs not found in the training data. Abernethy et al. (2023) study the ability

of transformers to segment the context into pairs of examples and labels and provide learning guar-

antees when the labeling is of the form of a sparse function. The work of Bietti et al. (2023) studies

the dynamics of training transformers on a task that is reminiscent of our Markov chain setting but

has additional complexities. Instead of drawing a fresh Markov chain for each sequence, in their task

all sequences are sampled from the sameMarkov chain; after certain ‘trigger’ tokens, the following

‘output’ token is chosen deterministically within a sequence. Thus, successful prediction requires

incorporating both global bigram statistics and in-context deterministic bigram copying, unlike in

our setting where the patterns computed by statistical induction heads are necessary and sufficient.

As in our work, they identify multiple distinct stages of training and show howmultiple top-down

gradient steps lead to a solution.

Other works observe that ICL is possible due to the ability of transformers to implement gradi-

ent descent as a “meta learning” algorithm, and show some evidence that this indeed corresponds to

how transformers learn in-context (Von Oswald et al., 2023; Dai et al., 2022). The work of Li et al.

(2023) presents a theoretical framework for studying ICL, providing some risk bounds on ICL of

supervised learning algorithms. Guo et al. (2023) construct synthetic in-context learning problems

with a compositional structure, studying the representation capacity of transformers to learn these

problems in-context. In (Hendel et al., 2023), the authors demonstrate that transformers learn to

represent task vectors, providing a mechanistic analysis of ICL in LLMs. Kirsch et al. (2022) view

ICL as a broad meta-learning paradigm, and observe that transformers meta-trained on real image

classification tasks undergo similar phase transitions as the ones we observe in this work.

InductionHeads. Elhage et al. (2021) studies the formation of induction heads, sub-components

of transformers that match previous occurrences of the current token, retrieving the token that suc-

ceeds the most recent occurrence. Olsson et al. (2022) studies in-context learning by analyzing the
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formation of induction heads in language models, showing empirical evidence that both large and

small transformers display a phase transition in the ability to learn in-context. Reddy (2023) also

studies the formation of induction heads and their role in ICL, showing empirically that a three

layer network exhibits a sudden formation of induction heads towards solving some ICL problem

of interest. Bietti et al. (2023) study the effect of specific trigger tokens on the formation of induc-

tion heads.

Phase Transitions. It has been observed in different contexts that neural networks and lan-

guage models display a sudden drop in loss during their training process. This phase transition is

often related to emergence of new capabilities in the network. The work of (Power et al., 2021) ob-

served the “grokking” phenomena, where the test loss of neural networks sharply drops, long after

the network overfits the training data. (Chen et al., 2023) shows another example of a phase tran-

sition in language model training, where the formation of specific attention mechanisms happen

suddenly in training, causing the loss to quickly drop. Barak et al. (2022) observe that neural net-

works trained on complex learning problems display a phase transition when converging to the cor-

rect solution. Several works (Kumar et al., 2023; Lyu et al., 2023) attribute these phase transitions

to rapid changes in the inductive bias of networks, while Merrill et al. (2023) argue that the models

are sparser after the phase change. Schaeffer et al. (2023) warn that phenomena in deep learning that

seem to be discontinuous can actually be understood to evolve continuously once seen through the

right lens.

Simplicity Bias. Various works observed that neural networks have a “simplicity bias”, which

causes them to “prioritize” learning simple patterns first (Arpit et al., 2017; Valle-Perez et al., 2018).

The work of (Kalimeris et al., 2019) shows that SGD learns functions of increased complexity, first

fitting a linear concept to the data before moving to more complex functions. (Shah et al., 2020)
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shows that the simplicity bias of neural networks can sometimes be harmful, causing them to ig-

nore important features of the data. Chen et al. (2023) demonstrate the effect of simplicity bias

on language tasks that require understanding of syntactic structure. Abbe et al. (2023) provide a

theoretical framework for understanding how the simplicity of the target function can govern the

convergence time of SGD, describing how simple partial solutions can speed up learning; in con-

trast, in our setting, the unigram solution appears likely to be a distractor which delays learning of

the correct solution.

Concurrentworks In parallel to this work, there have been a number of papers devoted to

the study of similar questions regarding in-context learning or Markov chains: Akyürek et al. (2024)

empirically compare the ability of different architectures to perform in-context learning of regu-

lar languages. Hoogland et al. (2024) observe similar stage-wise learning behaviors on transformers

trained on language or synthetic linear regression tasks. Makkuva et al. (2024) study the loss land-

scape of transformers trained on sequences sampled from a single Markov Chain.

8.2 Setup

In this section, we describe our learning problem and present the neural networks that we will use

for learning.

8.2.1 ICL-MCTask

Our learning task consists of Markov Chains with random transition matrices. The goal is to in-

context estimate the transition probabilities from sampled sequences, in order to predict the next

state. Formally, a sample is a Markov Chain with state space S = {1, . . . , k} and a transition matrix

P randomly sampled from some prior distribution, with x1 drawn from some other prior distribu-

tion (potentially dependent onP), and the rest of xxx = (x1, . . . , xt) drawn from theMarkov Chain.

120



We primarily focus on the case where each row of the matrix is sampled from the Dirichlet distribu-

tion with concentration parameter α, i.e. Pi,: ∼ Dir(α). We want to learn a predictor that, given

context x1, . . . , xt, predicts the next token, xt+1. Note that this is an inherently non-deterministic

task, even provided full information about the transition matrix, and as such it can better capture

certain properties of language than previous in-context learning modeling approaches (Garg et al.,

2022).

We focus on the case of the flat Dirichlet distribution, with α = (1, . . . , 1)⊤, that corresponds

to uniformly random transition probabilities between states. We draw the initial state x1 from the

stationary distribution π of the chain (which exists almost surely). We primarily consider the case

where the number of states k is 2 or 3.

In subsection 8.3.3, we consider the generalization of this setting to n-grams for n > 2. Instead

of Pr(xt) being determined by xt−1, we let Pr(xt) be determined by xt−n+1, . . . , xt−1, according to a

conditional distributionP drawn from some prior. In particular, for each tuple of n − 1 tokens, we

sample the vector of conditional probabilities for the next state from a flat Dirichlet distribution.

8.2.2 Potential Strategies for (Partially) Solving ICL-MC

We adopt the Bayesian interpretation of in-context learning (Xie et al., 2022), in which a prior dis-

tribution is given by the training data, and, at test time, the model updates this prior given the in-

context sequence. In this framework, we focus on two strategies for Bayesian inference: a unigram

strategy which assumes tokens in each sequence are i.i.d. samples, and the bigram strategy which

correctly takes into account dependencies among adjacent tokens.

1st strategy: Unigrams Since we let the Markov chain reach its stationary distribution

(which exists a.s.), the optimal strategy across unigrams is just to count frequency of states and form

a posterior belief about the stationary distribution. Unfortunately, the stationary distribution of
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this randomMarkov chain does not admit a simple analytical characterization when there is a finite

number of states, but it can be estimated approximately. At the limit of k → ∞, the stationary

distribution converges to the uniform distribution (Bordenave et al., 2008).

2nd strategy: Bigrams For any pair of states i and j, letPij be probability of transitioning

from i to j. On each sample xxx, we can focus on the transitions from the i-th state, which follow a

categorical distribution with probabilities equal to (Pi1, . . . ,Pik). If we observe the in-context em-

pirical counts {cij}kj=1 of the transitions, thenPij is given by:

(Pi1, . . . ,Pik) |xxx ∼ Dir(k, ci1 + α1, . . . , cik + αk), (8.1)

where, recall, α1, . . . , αk are the Dirichlet concentration parameters of the prior. Hence, eachPij has

a (marginal) distribution that is actually a Beta distribution:

Pij|xxx ∼ Beta

cij + αj,
∑
j
αj +Ni − αj − cij

 , (8.2)

whereNi is the total number of observed transitions from state i. As such, our best (point) estimate

for each state j is given by:

E
[
Pij|xxx

]
=

cij + αj
N+

∑
i αi

. (8.3)

For the uniformDirichlet, α = (1, . . . , 1)⊤, it is E
[
Pij|xxx

]
=

cij+1
Ni+k .

Remark 8.1. The bigram strategy implicitly assumes that the first token x1 is sampled uniformly, as

opposed to being sampled from the stationary distribution (which is used in our experiments and

theoretical results). As the context length grows, the bigram statistics approach the Bayes optimal

solution either way and this difference becomes negligible.
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8.2.3 Architectures: Transformers and Simplifications

We are mainly interested in investigating how transformers (Vaswani et al., 2017) can succeed in

in-context learning this task. We focus on attention-only transformers with 2 layers with causal

masking which is a popular architecture for language modeling. Given an input sequence xxx, the

output of an n-layer attention-only transformer* is:

TF(xxx) = P ◦ (Attnn + I) · · · ◦ (Attn1 + I) (8.4)

Where exxx ∈ Rt×d is an embedding of xxx, and Attn(xxx) is masked self attention with relative position

embeddings (Shaw et al., 2018), which is parameterized byWQ,WK,WV ∈ Rd×d, v ∈ Rt×d:

Attn(z) = softmax(mask(A))zWV

Ai,j = Ai,j =
(ziWQ)(zjWK + vi−j+1)

⊤
√
d

.

(8.5)

During training, we minimize this loss:

L(θ) = E
xxx∼P

P∼Dir(α)⊗k

1
t

t∑
p=1

l
(
TF(xxx; θ)p, xp+1

) , (8.6)

where θ denotes the parameters of the model and l is a loss function such as the cross entropy or

margin loss. For our experiments, we run on the standard cross-entropy loss. For our theoretical

results, we analyze training under the margin loss that is a generalization of the hinge loss to the case

*For simplicity of notation we assume embedding dimension equals the hidden dimension, in general
there can be a hidden dimension
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of more than 2 classes: for hyperparameter Δ > 0,

lM(f(e)p,:, xp+1) =
1
k

k∑
i=1,

i̸=xp+1

max
{
0,Δ + f(e)p,i − f(e)p,xp+1

}
. (8.7)

We now show how a two-layer transformer can represent the optimal bigrams solution.

Proposition 8.2 (Transformer Construction). A single-head two layer attention-only transformer

can find the bigram statistics in the in-context learning markov chain task.

Proof. Set the internal dimension d = 3k, and choose exxx to be one-hot embeddings—that is, exxxi =

δxxxi , where δ is the Kronecker delta. We will call the parameters of attention layer i,W
(i)
Q ,W(i)

K ,W(i)
V , v(i).

Let

v(1) =


δ21⊤k

0

0

 W(1)
Q =


cIk×k 0 0

0 0 0

0 0 0

 W(1)
K = 0 W(1)

V =


0 Ik×k 0

0 0 0

0 0 0


So,

A(1)
i,j =

(eiW
(1)
Q )(v(1)i−j+1)

⊤
√
d

.

Notice that A(1)
i,j = c1[j = i− 1].So, softmax(mask(A))(1)i,j ≈ 1[j = i− 1] for large enough c. So, for

any 2 ≤ i < t, 1 ≤ j < k, Attn1(e)i,j+k = ei−1,j. Effectively, the first layer appends the embedding

of the previous token after the embedding of the current token, so that the output at position i is

approximately
(
exi exi−1 0

)
.

The second layer is defined as follows:
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v(2) = 0 W(2)
Q =


cIk×k 0 0

0 0 0

0 0 0

 W(2)
K =


0 0 0

cIk×k 0 0

0 0 0

 W(2)
V =


0 0 Ik×k

0 0 0

0 0 0


Note that z = e+ Attn1(e), then

A(2)
i,j =

(ziW
(2)
Q )(zjW

(2)
k )⊤

√
d

=
cei(ej−1)⊤√

d
=

c√
d
1[xj−1 = xi].

So, for all j < i, softmax(mask(A))i,j ≈ 1[j = i− 1] for large enough c. For any 2 ≤ i < t, 1 ≤ j <

k,

Attn2(e)i,j+2k =
3k∑
h=1

1[xh−1 = xi](zW
(2)
V )h,j =

k∑
h=1

k∑
g=1

1[xh−1 = xi]1[xh = j].

Which is exactly the empircal bigram statistics (that is, the number of times xi → j appears before

position i), so to make this the output, P =


0

0

Ik×k

 *

Simplified Transformer Architecture. As we see from the construction, there are two

main ingredients in the solution realized by the transformer; (1st layer) the ability to look one token

back and (2nd layer) the ability to attend to itself. For this reason, we define aminimal model that is

expressive enough to be able to represent such a solution, but also simple enough to be amenable to

*Technically, the output of this construction is not the log probabilities as generally cross-entropy loss as-

sumes. These can be approximated linearly by setting P =

 b1⊤1
0

aIk×k

 to change the output from x to ax + b.

In practice, this approximation can achieve close to Bayes optimal loss.
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analysis. Let exp denote the one-hot embedding that corresponds to the state at position p ∈ [t], and

let E be theRt×k one-hot embedding matrix. Then the model is defined as:

f(E) = mask
(
EWk(ME)T

)
E, whereM =



v1 0 . . . 0

v2 v1 . . . 0
...

... · · ·
...

vt vt−1 . . . v1


∈ Rt×t andWk ∈ Rk×k.

(8.8)

Here mask (·) is a causal mask. Notice that the role ofWk is to mimic the attention mechanism of

the second layer and the role of v is that of the positional embeddings.

Fact 8.3. Both the bigrams strategy and the unigrams strategy can be expressed by the minimal

model with a simple choice of weights.

• Bigrams: For v = (0, 1, 0 . . . , 0)⊤,Wk = Ik×k, we have f(E)p,i =
∑p

t′=2 1 {xt′ = i} 1
{
xt′−1 = xp

}
.

• Unigrams: For v = (1, 0, 0 . . . , 0)⊤,Wk = 11T, we have f(E)p,i =
∑p

t′=1 1 {xt′ = i}.

8.3 Empirical Findings and Theoretical Validation

In this section, we present our empirical findings on how transformers succeed in in-context learn-

ing Markov Chains, we demonstrate the different learning stages during training and the sudden

transitions between them, and draw analytical and empirical insights from the minimal model.

8.3.1 Transformers In-Context LearnMarkov Chains Hierarchically

As can be seen in Figure 8.3, all the models converge near the Bayesian optimal solution, suggest-

ing that they learn to implement the bigram strategy. Curiously, however, the learning seems to be

happening in stages; there is an initial rapid drop and the model quickly finds a better than random
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Figure 8.3: A two layer transformer (top) and a minimal model (bottom) trained on our in‐context Markov Chain task. A
comparison of the two layer attention‐only transformer and minimal model (8.8) (with v having constant uniform initial‐
ization, andWK initialized to 0). The graphs on the left are test loss measured by KL‐Divergence from the underlying
truth. The green line shows the loss of the unigram strategy, and the orange line shows the loss of the bigram strategy.
The middle graph shows the effective positional encoding (for the transformer, these are for the first layer, and averaged
over all tokens). The graph on the right shows the KL‐divergence between the outputs of the models and three strategy.
The lower the KL‐divergence, the more similar the model is to that strategy.

solution. Afterwards, there is a long period of only slight improvement before a second rapid drop

brings the model close to the Bayes optimal loss. We observe that training a 1-layer transformer fails

to undergo a phase transition or converge to the right solution - see Figure E.8.

Interestingly, as can be seen from the horizontal lines in Figure 8.3, the intermediate plateau cor-

responds to a phase when the model reaches the unigram baseline. We provide evidence that this is

not a coincidence, and that after the initial drop in loss, the model’s strategy is very similar to the un-

igram strategy, before eventually being overtaken by the bigram strategy. Some of the strongest such

evidence is on the right in Figure 8.3, where we plot the KL divergence between model’s prediction

and the two different strategies. For both the strategies, their KL divergence from the model quickly

goes down, with the unigram solution being significantly lower. Around the point of the second

loss drop, the KL divergence between the model and the bigram solution decreases, while the other
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one increases, making it clear that the model transitions from the one solution to the other. This

final drop is what has been associated to prior work with induction heads formation (Olsson et al.,

2022); special dedicated heads inside a transformer are suddenly being formed to facilitate in-context

learning.

Mechanistic Evidence For Solutions Found By Transformer. To confirm how the

two layer attention-only transformer solves ICL-MC, we inspected the attention in each layer

throughout training. Figure 8.2 shows the attention for a particular input during different parts

of training. By the end of training, the attention consistently matches that of our construction,

with the first layer attending to tokens one in the past, and the second layer attending to tokens that

follow the same token as the current one. Note that even if the second layer of the transformer is

mostly the same as at the end of training, if the first layer is different, then the weights shown for the

second layer attention could differ dramatically. See also Figure E.6 in the Appendix that displays

how the models perform on different parts of the distribution during training.

Varying the data distribution - Unigrams slow down learning There are several

interesting phenomena in the learning scenario that we just described, but it is the second drop (and

the preceding plateau) that warrants the most investigation. In particular, one can ask the question:

is the unigram solution helpful for the eventual convergence of the model, or is it perhaps just a

by-product of the learning procedure?

To answer these questions, we define distributions over Markov chains that are in between the

distribution where unigrams is Bayes optimal, and the distribution where unigrams is as good as

uniform. As we see in Figure 8.4a, the transformers that are being trained on the distribution where

there is no unigrams “signal” train much faster.
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8.3.2 Theoretical Insights from theMinimal Model

To abstract away some of the many complicated components from the transformer architecture,

we focus our attention now to the minimal model of Section 8.2.3. We train minimal models of

eq. (8.8), starting from a deterministic constant initialization, by minimizing the cross entropy loss

with sgd. Full experimental details can be found in the Appendix. Figure 8.3 (bottom) displays the

training curves for the minimal model. Similar to the transformer, the model learns to converge to

the bigrams solution, spending however significantly less time, if any, to the unigram solution - even

though they can represent it.

We now provide theoretical insights on how training progresses stage by stage and how this is

achieved by the synergy between the two layers. As it turns out, there need to be at least two steps

of gradient descent in order for both elements of the solution to be formed. The following lemma

quantifies this.

Lemma 8.4. Let the model defined as in eq. (E.2) and initialized withWk = c11T, v = c1T. Then,

the after one step of stochastic gradient descent on the margin loss of eq. (8.7) we have:

W(1)
k =

c c

c c

+cη

O(t2)
B A

A B

+ O(t)

 v(1)j = c+
cη
t

[
(t− j+ 1)(t− j+ 2)

2
D+ O(t)

]
, j ∈ [t]

where A,B,D > 0 with B ≈ 4A (diagonal bias) and η is the learning rate. After the second step, v(2)2

becomes dominant, i.e. v(2)2 > v(2)j , j = 1, 3, 4, . . . , t.

See Appendix E.1 for the proof. We see that the gradient ofWk at initialization has a clear diag-

onal bias, and so it starts driving the 2nd layer towards the correct solution - see Constructions in

subsection 8.2.3. The gradient of the positional embeddings, v, however, is rather “uninformative”

to the correct coordinate that contains the one back position. Instead, it mostly favors the first po-
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sition (look at current token), and has a quadratic decay. It is only after the second step that the 1st

layer also starts realizing the solution, by growing v(2)2 - see Figure 8.4b.

There are several interesting observations that follow from Lemma 8.4 and can help us under-

stand better the two stages of learning - both in the toy model and in the transformer:

2nd layer is learnt first It has been observed before in a similar bigram learning setting with

a two-layer transformer that the model might be learning first the 2nd layer (Bietti et al., 2023). We

also make similar observations in our experiments with the minimal model and the transformers

(see figure 8.2), although the evidence is not so clear in the latter case. For the minimal model, the

gradient calculations, clearly suggest that starting from a default initialization, it is only the 2nd layer

that quickly “picks up” the right solution.

Passing by unigrams. The gradient of the positional embeddings v at initialization delivers

no information about the optimal solution, but has a quadratic structure instead that mostly favors

v1. If the gradient of the 2nd layer is small in scale (which can happen either due to the initialization

of v or to a small learning rate), thenWk will not deviate much from the uniform initialization.

Notice, then, that a uniformWk together with a biased first coordinate of v correspond precisely to

the unigram solution in this model. Thus, it is clear in this case thatWk not being aligned with the

solution yet, not only slows down v, but also biases it towards a simpler solution. We believe that the

same mechanism, perhaps manifested differently, is also responsible for the hierarchical learning in

the transformer.

Even/odd pattern. An interesting observation that comes out from the calculations is the

form of vj after 2 steps; the gradient amplifies much more the even coordinates than the odd ones,

with a scale that follows a geometric series. In fact, the ratio is closely related to the moments of the

eigenvalue of the transition matrix. This way the second coordinate starts growing larger than the
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Figure 8.4: (a) Training the transformer on two different distributions (with k = 4 symbols). In one distribution, the
transition matrix is a uniformly random doubly stochastic matrix, leading to the unigram algorithm being as bad as ran‐
dom, and in the Unigrams distribution each row of the matrix is the same uniformly random sample on the probability
simplex, so the unigram algorithm is Bayes optimal (which is when every row of the transition matrix is the same). The
second distribution is a mixture of the doubly stochastic and unigrams distribution. We then compare their loss on the
full distribution, with the x‐axis as the number of doubly‐stochastic samples seen. (b) Training of the minimal model in
In‐Context Learning Markov Chains with k = 2 states. (left) The heatmap of the 2nd layer (Wk matrix) that learns to be
close to diagonal. (right) The values of the positional embeddings (1st layer) that display the curious even/odd pattern.
Timestep corresponds to a phase when the model has started implementing the bigrams solution, but has not converged
yet.

rest and the model eventually learns to represent the bigrams solution. As a byproduct, however,

the rest of the even coordinates also grow in magnitude, despite not being part of the optimal solu-

tion. Perhaps surprisingly, we are able to also identify the same spurious pattern in the transformers!

In the transformer, if the positional embeddings are dominating attention (that is, ifWQ is unim-

portant in that layer), we can define an analogue of the minimal model: v̂i = softmax(exiWkvT).

Unlike v in the minimal model, v̂i depends on the token at position i, but in practice, during most

of training, v̂i is similar regardless of the value of xi. As can be seen on the top of Figure 8.3 (see also

Figure E.7), shortly before the second drop in the loss as the induction head forms around t = 92,

the positional embeddings start showing the same even/odd pattern for the first positions.

Unigram solution slows down learning full solution. By tweaking the data distri-

bution, we can probe different parts of learning. In particular, when we focus on a special case of
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Figure 8.5: Three‐headed transformer trained on In‐Context Learning 3‐grams (trigrams), with context length 200. Left:
Loss during training. The model hierarchically converges close to the Bayes optimal solution. Right: KL divergence
between the model and different strategies during training. As we observe, there are 4 stages of learning, each of them
corresponding to a different algorithm implemented by the model.

distribution where there is no unigrams solution, transformers learn faster and do not plateau for

long in the intermediate stage, and even more telling, giving additional “unigram samples” for free

slows down learning - see Figure 8.4a. The calculations also seem to confirm the first observation

(Corollary E.2 in the Appendix): the gradient of v at the first step evaluated on this special distri-

bution shows that, in contrast to the default case, there is no “heavy” preference towards the first

coordinate. Then, once there is enough signal from the second layer, training progresses much more

smoothly.

We now show that two-stage learning is not only necessary in some sense, but also sufficient to

reach the bigrams solution. We analyze the optimization process of the minimal model and discover,

that much like in the experiments with the transformers, there are separate phases that correspond

to learning of different parts of the model. In particular, our analysis is in a simplified setting where

the data distribution changes in the second step; the transition matrices are no longer sampled uni-

formly, but they are instead the “hard” examples of this task and contain the most “information”

about the solution. This idea is closely related to the technique of curriculum learning (Bengio

et al., 2009) and is naturally motivated in many settings. In this setting, we are able to show that two
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steps of gradient descent will reach the bigrams solution.

Proposition 8.5. (Informal) Consider the minimal model of eq. (8.8) being trained with online

SGD on the margin loss (8.7) with in-context loss (8.6). With appropriate choice of learning rates and

weight decay in the 2nd layer, two steps of gradient descent with curriculum learning reach the bigrams

solution.

The idea of the proof is that a first step of gradient descent with a small learning rate can align the

2nd layer, while a second step on “hard” examples can learn to identify perfectly the relevant rela-

tive embedding. The formal statement and its proof can be found in Appendix E.1. An interesting

by-product of the analysis is that the learning rate at the first step needs to be an order of magnitude

larger than at the second step, perhaps explaining why the second phase of learning in the experi-

ments takes significantly more time. It is worth noting that, while this is a simplified setting, it goes

beyond NTK-based (Jacot et al., 2018) analyses where the representations do not change much and

it crucially involves more than one step which has been a standard tool in the analysis of feature

learning in deep learning (Ba et al., 2022).

8.3.3 Beyond Bigrams: n-gram Statistics

We also investigated the performance of transformers on learning in-context n-grams for n > 2; in

particular, 3-grams. We trained attention-only transformers with three heads in each layer by min-

imizing the in-context cross entropy loss with the Adam optimizer. As can be seen in Figure 8.5

(left), the model eventually converges to the Bayes optimal solution. Interestingly, as in the case of

Markov Chains, the model displays a “hierarchical learning” behavior characterized by long plateaus

and sudden drops. In this setup, the different strategies correspond to unigrams, bigrams and tri-

grams, respectively. This is presented clearly on the right of Figure 8.5, where we plot the similar-

ity of the model with the different strategies and it exhibits the same clear pattern as in the case of
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n = 2. Single attention headed models could not achieve better performance than bigrams. We

leave a more thorough investigation for future work.

8.4 Conclusion andDiscussion

In this work, we have introduced a simple learning problem which serves as a controlled setting for

understanding in-context learning and the emergence of (statistical) induction heads. Induction

heads are a commonmotif in LLMs, which suggests the natural direction of exploring to what ex-

tent our various findings extend to natural language training data. Notably, on the way to solving

the ICL-MC task, networks pass through a sequence of well-characterized discrete incomplete solu-

tions. Simple but incomplete solutions may be commonplace in language modeling and other rich

learning settings; for any such solution, one can ask to what extent its presence speeds up or slows

down the formation of more complex circuits with higher accuracy.
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A.1 Proofs of capacity bounds

In this section we present the full proofs (including the omitted proofs) of our capacity bounds. We

also cover relevant background and useful technical lemmas.

A.1.1 Rademacher complexity and generalization bounds

Here we briefly review Rademacher complexity and its relationship to covering numbers and gener-

alization bounds. We refer the reader to Bartlett &Mendelson (2002) for a more detailed exposition.

Definition A.1 (Empirical Rademacher complexity). For a given class of functionsF = {f : X →

R} and {z(i) ∈ X}mi=1, the empirical Rademacher complexity R̂(F ; z(1), . . . , z(m)) is defined as

R̂(F ; z(1), . . . , z(m)) =
1
m
Eε

[
sup
f∈F

m∑
i=1

εif(z(i))

]
,

where ε is a vector ofm i.i.d. Rademacher random variables (Pr[εi = 1] = Pr[εi = −1] = 1/2).

In order to relate the Rademacher complexity and ℓ∞-covering numbers, we use a modified ver-

sion of Dudley’s metric entropy.

Lemma A.2 (Dudley (1967); modified). Consider a real-valued function classF such that |f| ≤ A

for all f ∈ F . Then

R̂(F ; z(1), . . . , z(m)) ≤ c · inf
δ≥0

δ+
∫ A

δ

√
logN∞(F ; ε; z(1), . . . , z(m))

m
dε


for some constant c > 0.

Proof sketch. The original statement is for 2-norm covering number, but the∞-norm case reduces

to the 2-norm case becauseN2(·) ≤ N∞(·). The original statement also fixes δ = 0 rather than
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taking an infimum. Also, the standard statement has the integral going from 0 to∞, but these are

easily replaced with δ and A.

For our paper, we will instantiate the above lemma for log covering numbers scaling as 1/ε2.

Corollary A.3 (Rademacher complexity via covering number). Consider a real-valued function class

F such that |f| ≤ A for all f ∈ F . Suppose logN∞(F ; ε; z(1), . . . , z(m)) ≤ CF/ε
2, then

R̂(F ; z(1), . . . , z(m)) ≤ c ·
√

CF
m
·
(
1+ log

(
A
√
m/CF

))

for some constant c > 0.

Proof. Using Lemma A.2, we have for some constant c > 0,

R̂(F ; z(1), . . . , z(m)) ≤ c inf
δ≥0

δ+
∫ A

δ

√
logN∞(F ; ε; z(1), . . . , z(m))

m
dε


≤ c inf

δ≥0

(
δ+

∫ A

δ

√
CF
ε2m

dε

)

= c inf
δ≥0

(
δ+

√
CF
m

∫ A

δ

1
ε
dε

)

= c inf
δ≥0

(
δ+

√
CF
m

log(A/δ)

)

= c
√

CF
m

(
1+ log

(
A
√
m/CF

))
.

We can now obtain a generalization guarantee from the Rademacher complexity of a function

class:
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Theorem A.4 (Bartlett &Mendelson (2002)). LetD be a distribution overX ×R and let ℓ : R×R

be a b-bounded loss function that is L-Lipschitz in its first argument. For a given function classF and

f ∈ F , let risk(f;D) := E(x,y)∼D[ℓ(f(x), y)] and r̂isk
(
f; (z(i), y(i))mi=1

)
:= 1

m
∑m

i=1 ℓ(f(z(i)), y(i)).

Then for any δ > 0, with probability at least 1− δ, simultaneously for all f ∈ F ,

∣∣∣risk(f;D)− r̂isk
(
f; (z(i), y(i))mi=1

)∣∣∣ ≤ 4L R̂
(
F ; z(1), . . . , z(m)

)
+ 2b

√
log(1/δ)
2m

.

Combining the above, we get:

Lemma A.5 (Lemma 4.2 (restated)). Consider a function classF such that |f| ≤ A for all f ∈ F

and logN∞(F ; ε; x(1), . . . , x(m)) ≤ CF/ε
2 for all x(1), . . . , x(m) ∈ Xm. Then for any δ > 0, with

probability at least 1− δ, simultaneously for all f ∈ F ,

∣∣∣risk(f;D)− r̂isk
(
f; (x(i), y(i))mi=1

)∣∣∣ ≤ 4cL
√

CF
m

(
1+ log

(
A
√

m/CF

))
+ 2b

√
log(1/δ)
2m

,

for some constant c > 0.

A.1.2 Useful lemmas

Lemma A.6. Consider function f : Rd → Δd−1 such that the Jacobian of the function satisfies

‖J f(θ)‖1,1 ≤ cf for all θ ∈ Rd, then for any vectors θ1, θ2 ∈ Rp,

‖f(θ1)− f(θ2)‖1 ≤ cf‖θ1 − θ2‖∞.

Proof. By the fundamental theorem of calculus applied to g(t) = f(tθ1 + (1 − t)θ2), followed by a

change of variables:

f(θ1)− f(θ2) =
(∫ 1

0
J (tθ1 + (1− t)θ2) dt

)
(θ1 − θ2),
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We have

‖f(θ1)− f(θ2)‖1 =
∥∥∥∥∫ 1

0
J (tθ1 + (1− t)θ2) (θ1 − θ2)dt

∥∥∥∥
1

By Jensen’s inequality:

≤
∫ 1

0
‖J (tθ1 + (1− t)θ2) (θ1 − θ2)‖1 dt

Using ‖Ax‖1 ≤ ‖A‖1,1 ‖x‖∞:

≤
∫ 1

0
‖J (tθ1 + (1− t)θ2)‖1,1 ‖θ1 − θ2‖∞ dt

By assumption on the Jacobian:

≤ cf ‖θ1 − θ2‖∞ .

Corollary A.7. For vectors θ1, θ2 ∈ Rp, ‖softmax(θ1)− softmax(θ2)‖1 ≤ 2‖θ1 − θ2‖∞.

Proof. Observe that for softmax, the Jacobian satisfies:

J(θ) = diag(softmax(θ))− softmax(θ)softmax(θ)⊤.

We have for all θ, h,

‖J(θ)‖1,1 =
p∑

i=1

p∑
j=1

∣∣softmax(θ)i(1[i = j]− softmax(θ)j)
∣∣

=

p∑
i=1

softmax(θ)i

1− softmax(θ)i +
∑
j̸=i

softmax(θ)j


= 2

p∑
i=1

softmax(θ)i (1− softmax(θ)i)

≤ 2.
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Combining the above with Lemma A.6 gives the desired result.

Lemma A.8. For αi, βi ≥ 0, the solution to the following optimization

min
x1,...,xn

n∑
i=1

αi
x2i

subject to
n∑
i=1

βixi = C

is γ3
C2 and is achieved at xi =

C
γ

(
αi
βi

)1/3
where γ =

∑n
i=1 α

1/3
i β

2
3
i .

Proof. The proof follows by a standard Lagrangian analysis.

Lemma A.9 (Contractivity of Πnorm). LetΠnorm be the projection operator onto the unit norm ball.

For any vectors u, v, we have ‖Πnorm(u)−Πnorm(v)‖ ≤ ‖u− v‖.

Proof. If u, v are both in the unit ball then this follows trivially. Let us assume that ‖u‖ ≥ ‖v‖ and

‖u‖ ≥ 1 WLOG. First suppose ‖v‖ ≤ 1. Let B(1)V = αu be the projection of v in the direction of u,

and let B2V = v− B(1)V . Then

‖Πnorm(u)−Πnorm(v)‖2 = ‖u/‖u‖ − v‖2

= ‖u/‖u‖ − (αu+ B2V)‖2

= ‖(‖u‖−1 − α)u− B2V‖2

= (‖u‖−1 − α)2‖u‖2 + ‖B2V‖2

≤ (1− α2)‖u‖2 + ‖B2V‖2 since ‖u‖−1 < α < 1

= ‖u− (αu+ B2V)‖2

= ‖u− v‖2
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If ‖v‖ > 1, then

‖Πnorm(u)−Πnorm(v)‖ = ‖Πnorm(u/‖v‖)−Πnorm(v/‖v‖)‖ ≤ ‖u/‖v‖ − v/‖v‖‖ < ‖u− v‖.

where the second-to-last inequality follows from the ‖v‖ < 1 case.

Lemma A.10 (Zhang (2002), Theorem 4). Let V : {v : v ∈ Rd1 , ‖v‖ ≤ B1} andFlinear = {x 7→

v⊤x : v ∈ V}. For any δ > 0 and x(1), . . . , x(N) satisfying ‖x(i)‖ ≤ B2 ∀i,

logN∞(Flinear; ε; x(1), · · · , x(N)) ≤ 36
B21B22
ε2

log(2d4B1B2/ε+ 2eN+ 1).

A.1.3 Pseudo-dimension lower bound

Recall that a Transformer self-attention head is of the form

ftf-head(X;WV,WQK) := σ
(
W⊤

VX⊤softmax
(
XW⊤

QKxτ
))

and that the pseudo-dimension of a function classF is defined as

Pdim(F) := max
c∈R

VCdim({h(·) = sign(f(·)− c) : f ∈ F})

For the purposes of this proof, we will treat xτ as a fixed vector—so either it is not treated as part

of the input, or it is set to the same value for all of the inputs. Thus,W⊤
QKxτ is a fixed vector, which

we call wQK. Moreover, we will setWV to be a d × 1 matrix, so we will treat it as a vector wV ∈

Rd. Also, so long as the activation function is non-decreasing and non-constant, it does not affect

the pseudo-dimension and can be safely ignored. Thus, we will deal with the simplified classF of

functions of the form:

f(X;wV,wQK) := w⊤
VX⊤softmax

(
XwQK

)
141



for wV,wQK ∈ Rd.

Proof of Proposition 4.8. For simplicity, we consider the case where T is a power of 2. We will con-

struct a set of logT inputs {X(i)}logTi=1 inRT that are shattered byF .

We will construct a shattering using the threshold c = 1/2, which gives us a lower bound on the

pseudo-dimension:

Pdim(F) ≥ VCdim({h(·) = sign(f(·)− 1/2) : f ∈ F}).

In particular, we will shatter the setX = {X(i) : i ∈ [logT]} of sequences defined by

x(i)t := (cos(2πt/T), sin(2πt/T), bin(t)i).

Here we have indexed t = 0, . . . ,T − 1, and bin(t)i is defined to be the ith bit of the binary ex-

pansion of the integer t (padded with 0s in the front such that the expansion is length logT). We

can think of the first two coordinates of x(i)t as a (fixed) circular “positional encoding”, and the third

coordinate as the “token embedding”. The token embedding is designed such thatX is shattered by

the function classP = {proj(s)(X) : s = 0, . . .T− 1} of projection functions

proj(s)(X) = xs[3].

Wewill design the attention matrices to approximate the functions inP .

For s = 0, . . .T− 1, let

w(s)
QK := (T2 cos(2πt/T),T2 sin(2πt/T), 0).

The tth attention weight w(s)
QK

⊤
x(i)t is maximized when t = s. In fact, w(s)

QK is of sufficiently large
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magnitude that the token x(i)s is attended to more strongly than all the other positions combined.

Also, let

w(s)
V := (0, 0, 1).

This projects onto the token embedding coordinate.

Observe that

w(s)
QK

⊤
x(i)t = T2 cos(2π(s− t)/T),

so we have

softmax(Xw(s)
QK)[t] =

exp(T2 cos(2π(s− t)/T))∑T−1
τ=0 exp(T2 cos(2π(s− τ)/T))

=
exp(T2 cos(2π(s− t)/T))∑T−1

τ=0 exp(T2 cos(2πτ/T))

Let us bound the denominator using the fact that cos(θ) ≤ 1− 2
π2 θ

2 for θ ∈ [0, π]:

T−1∑
τ=0

exp(T2 cos(2πτ/T)) ≤ exp(T2) + 2
⌊(T−1)/2⌋∑

τ=1
exp(T2 cos(2πτ/T))

≤ exp(T2) + 2
⌊(T−1)/2⌋∑

τ=0
exp
(
T2
(
1− 2

π2
(2πτ/T)2

))

= eT
2
+ 2eT

2
⌊(T−1)/2⌋∑

τ=1
e−8τ

2

≤ eT
2
+ 2eT

2
∫ ⌊(T−1)/2⌋

ρ=0
e−8ρ

2
dρ

≤ eT
2
+ 2eT

2
∫ ∞

ρ=0
e−8ρ

2
dρ

= eT
2
+

√
π
8
eT

2

Hence, for each s,

softmax(Xw(s)
QK)[s] ≥

1
1+

√ π
8
>

1
2
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and ∑
t̸=s

softmax(Xw(s)
QK)[t] ≤ 1− 1

1+
√ π

8
<

1
2

Then we claim that the set {f(·;w(s)
V ,w(s)

QK)}
T−1
s=0 shatters {X(i)}logTi=1 :

f(X(i);w(s)
V ,w(s)

QK) = w(s)
V

⊤
X⊤softmax

(
X(i)w(s)

QK

)
= w(s)

V
⊤ T−1∑

t=0
softmax

(
X(i)w(s)

QK

)
[t] · bin(t)i

which is greater than 1/2 if bin(s)i = 1 and is less than 1/2 if bin(s)i = 0, since the t = s term in the

sum dominates all the other terms. Thus,

{h(·) = sign(f(·)− 1/2) : f ∈ F} = P,

so the different choices of s induce a shattering.

A.1.4 Covering number upper bounds

Proof of Lemma 4.7. Observe that,

∥∥∥fhead(X, z; θs, θin)− fhead(X, z; θ̂s, θ̂in))
∥∥∥

=
∥∥∥φout (φin(X; θin)⊤Norm(Score(X, z; θs))

)
− φout

(
φin(X; θ̂in)

⊤Norm(Score(X, z; θ̂s))
)∥∥∥

By Lout-Lipschitzness of φout and bound on ‖w‖:

≤ Lout
∥∥∥φin(X; θin)⊤Norm(Score(X, z; θs))− φin(X; θ̂in)

⊤Norm(Score(X, z; θ̂s))
∥∥∥
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By triangle inequality:

≤ Lout
∥∥∥φin(X; θin)⊤ (Norm(Score(X, z; θs))− Norm(Score(X, z; θ̂s))

)∥∥∥
+ Lout

∥∥∥∥(φin(X; θin)− φin(X; θ̂in)
)⊤

Norm(Score(X, z; θ̂s))
∥∥∥∥

Using ‖Pv‖ ≤ ‖P‖2,∞‖v‖1 and Bin-boundedness of φin:

≤ LoutBin
∥∥∥Norm(Score(X, z; θs))− Norm(Score(X, z; θ̂s))

∥∥∥
1

+ Lout
∥∥∥∥(φin(X; θin)− φin(X; θ̂in)

)⊤∥∥∥∥
2,∞

∥∥∥Norm(Score(X, z; θ̂s))
∥∥∥
1

By Lemma A.6 and the assumption onNorm:

≤ LoutCNorm

∥∥∥φin(X; θin)⊤∥∥∥2,∞ ∥∥∥Score(X, z; θs)− Score(X, z; θ̂s)
∥∥∥
∞

+ Lout
∥∥∥∥(φin(X; θin)− φin(X; θ̂in)

)⊤∥∥∥∥
2,∞

By boundedness of φin and
∥∥X⊤∥∥

2,∞ ≤ BX:

≤ LoutCNormBinBX
∥∥∥Score(X, z; θs)− Score(X, z; θ̂s)

∥∥∥
∞

+ Lout
∥∥∥∥(φin(X; θin)− φin(X; θ̂in)

)⊤∥∥∥∥
2,∞

.

Proof of Theorem 4.6. Our goal is to show that for every ε > 0, collection of inputs (X(1), z(1)), . . . , (X(m), z(m)),

there is a cover Chead such that for all θs ∈ Θs, θin ∈ Θin, there is some (̂θs, θ̂in) ∈ Chead such that

maxi
∥∥∥fhead(X(i), z(i); θs, θin)− fhead(X(i), z(i); θ̂s, θ̂in)

∥∥∥ ≤ ε.

Observe that for all θs, θ̂s,

max
i∈[m]
‖Score(X(i), z(i); θs)−Score(X(i), z(i); θ̂s)‖∞ = max

i∈[m],t∈[T]

∣∣∣Score(x(i)t , z(i); θs)− Score(x(i)t , z(i); θ̂s)
∣∣∣ .

Similarly, for all θin, θ̂in,

max
i∈[m]

∥∥∥∥(φin(X(i); θin)− φin(X
(i); θ̂in)

)⊤∥∥∥∥
2,∞

= max
i∈[m],t∈[T]

∥∥∥φin(x(i)t ; θin)− φin(x
(i)
t ; θ̂in)

∥∥∥ .
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This crucially allows us to aggregate over the i and t dimensions together.* Therefore, we can con-

siderN∞ covers for the above to bound the overall covering number.

Let CScore be the εScore-cover (∞) forFScore over inputs
{
(x(i)t , z(i))

}
i∈[m],t∈[T]

of size

N∞

(
FScore; εScore; {(x

(i)
t , z(i))}i∈[m],t∈[T]

)
.

Also, Let Cin be the εin-cover (∞) forFin over inputs {x(i)t }i∈[m],t∈[T] of size

N∞

(
Fin; εin; {x(i)t }i∈[m],t∈[T]; ‖ · ‖2

)
.

We are ready to construct the cover forFhead. Set Chead = {fhead(·; θ̂s, θ̂in))i∈[m] : θ̂s ∈

CScore, θ̂in ∈ Cin}. Then for any θs ∈ Θs, θin ∈ Θin, there exists θ̂s, θ̂in ∈ Chead, such that for

all i ∈ [m], using Lemma 4.7:

∥∥∥fhead(X(i), z(i); θs, θin)− fhead(X(i), z(i); θ̂s, θ̂in)
∥∥∥ ≤ CNormLoutBinBXεScore + Loutεin.

The size of the cover we have constructed is,

log |Chead| = log |CScore|+ log |Cin|

= logN∞

(
FScore; εScore; {(x

(i)
t , z(i))}i∈[m],t∈[T]

)
+ logN∞

(
Fin; εin; {x(i)t }i∈[m],t∈[T]; ‖ · ‖2

)

and we are done.

*In the case of the Transformer self-attention mechanism, we will obtain∞-norm covering numbers for
Score and φin that have only logarithmic dependence on the number of examples. Because of this aggrega-
tion trick, the resulting covering number for the whole layer will have merely logarithmic dependence on the
context length T.
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Proof of Corollary 4.9. By Theorem 4.6, the covering number ofFtf-head satisfies

logN∞

(
Ftf-head; ε;

{
(X(i), z(i))

}m

i=1

)
≤ inf

α∈[0,1]

[
logN∞

(
FQK;

αε
2LσBVBX

; {(x(i)t , z(i))}i∈[m],t∈[T]

)
+ logN∞

(
FV;

(1− α)ε
Lσ

; {x(i)t }i∈[m],t∈[T]; ‖ · ‖2
)]

.

where we have used the fact that for a scalar-output Transformer layer:

• softmax satisfies the Jacobian assumption with Csoftmax = 2 using Corollary A.7.

• Lout is the Lipschitz constant of σ: Lσ.

• Bin is a bound on the norm ofW⊤
V xwith respect to norm of x: BV.

By Lemma 4.10, for any εQK, εV > 0:

logN∞

(
FQK; εQK; {(x(i)t , z(i))}i∈[m],t∈[T]

)
≲

(B2,1QKBX)
2 log(dmT)
ε2QK

logN∞

(
FV; εV; {(x(i)t , z(i))}i∈[m],t∈[T]; ‖ · ‖2

)
≲ (B2,1V BX)2 log(dmT)

ε2V

sinceWQK,WV ∈ Rd×d (k = d). We want to choose εQK and εV to minimize the sum of the above

two terms, subject to

2LσBVBXεQK + LσεV ≤ ε.

By Lemma A.8, the solution to this optimization leads to an optimal bound of:

logN∞(Ftf-head; ε;X(1), . . . ,X(M)) ≲ (LσBX)2 ·

(
(B2,1V )

2
3 + (B2,1QKBVBX)

2
3

)3
ε2

· log(dmT).
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Proof of Lemma 4.10. Our approach will be to construct a cover by decomposing the problem into

two separate cover problems, (1) ℓ2-cover over the possible norms of the rows ofW, and (2) ℓ∞-

cover of the setW constrained to the norms dictated by the first cover. More formally, let us define:

W:,2 =




‖w1‖
...

‖wd1‖

 : W =


w1
...

wd1

 ∈ W
 =

{
v ∈ Rd1 : ‖v‖1 ≤ BW

}
, and

Fv =

x→Wx : W =


w1
...

wd1

 ∈ Rd1×d2 , ∀i ‖wi‖ ≤ vi

 .

Denote CW to be the ε1-cover (in terms of ℓ2-norm) forW:,2*, and for any v ∈ Rd1 , denote Cv :=

N∞
(
Fv, ε2; x(1), . . . , x(N); ‖ · ‖2

)
. We will set ε1 and ε2 later.

We will first show that C := {f : v ∈ CW , f ∈ Fv} is an (ε2 + BXε1)-cover (in terms of ℓ∞) for

F . Consider f ∈ F parameterized by someW =


w1
...

wd1

. SinceW ∈ W , we know that there is a

v̄ ∈ CW , such that, √√√√ d1∑
i=1

(‖wi‖ − v̄i)2 ≤ ε1.

*Here the cover is for a set and not a function.
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Define W̄ =


v̄1 · w1

∥w1∥
...

v̄d1 ·
wd1

∥wd1∥

. Then there exists f ∈ Fv̄ ⊆ C such that

max
i∈[N]
‖W̄x(i) − f(x(i))‖ ≤ ε2.

Nowwe have, for all i ∈ [N],

‖Wx(i) − f(x(i))‖ ≤ ‖W̄x(i) − f(x(i))‖+ ‖(W̄−W)x(i)‖

≤ ε2 +

√√√√√ d1∑
j=1

(v̄j − ‖wj‖)2
(
wj · x(j)

‖wj‖2

)2

≤ ε2 + BX

√√√√ d1∑
j=1

(
v̄j − ‖wj‖)2

)
≤ ε2 + BXε1.

Thus, we get the desired cover. Note that the size of the cover satisfies

log |C| ≤ log |CW|+ max
v∈CW

log |Cv|.

Nowwe need to construct the sub-covers and bound the size of C. Let us first construct the cover

CW. Using Maurey’s sparsification (see Theorem 3 in Zhang (2002)), we can find a proper cover of

CW which satisfies,

log |CW| ≤
B2W
ε21

log(2d1 + 1).

Let us now construct Cv for a fixed v. The approach will be to cover each of the rows ofW inde-

pendently, treating each as specifying a linear function fromRd2 → R. By Lemma A.10, letting
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Z(b) : {z : z ∈ Rd2 , ‖z‖ ≤ b} andFlinear(b) = {x 7→ z⊤x : z ∈ Z(b)}, for any δ > 0

logN∞(Flinear(b); δ; x(1), · · · , x(N)) ≤ cb2B2X log((1+ bBX/δ)N)

δ2
.

In fact the cover, which we denote by F̄linear(b; δ), is proper: F̄linear(b; δ) = {x 7→ z̄⊤x : z̄ ∈ Z̄} for

some finite subset Z̄ ⊂ Z(b). Then the cover for the matrix can be constructed as,

Cv =

x 7→ Z̄x : Z̄ =


z̄1
...

z̄d1

 : z̄i ∈ F̂linear
(
vi; ε2

√ vi
‖v‖1

)
for all i

 .

Observe that this forms a cover forFv. For any f ∈ Fv parameterized byW, let w̄i be the closest

element in the corresponding row covers, then we have

‖Wx(i) − W̄x(i)‖ =

√√√√ d2∑
j=1

(w⊤
i x(i) − w̄⊤

i x(i))2 ≤

√√√√ d2∑
j=1

ε22 ·
vi
‖v‖1

= ε2.

Note that the size of Cv can be bounded as,

log |Cv| =
d2∑
i=1

logN∞

(
Flinear(vi); ε2

√ vi
‖v‖1

; x(1), · · · , x(N)

)

≤
d2∑
i=1

cv2i ‖v‖1B2X log((1+ ‖v‖1BX/ε2)N)

ε22vi

=
c‖v‖21B2X log((1+ ‖v‖1BX/ε2)N)

ε22
≤ cB2WB2X log((1+ BWBX/ε2)N)

ε22
.
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Combining the above and setting ε1, ε2 appropriately, we get

log |C| ≤ B2WB2X
ε2

log(d1N).

A.1.5 Capacity with positional embeddings

Since the Transformer architecture is permutation invariant for all t 6= τ, positional embeddings

(fixed or trainable) are typically added to the inputs to distinguish the different positions of the

tokens. These positional embeddings are matrices P ∈ RT×d such that P = [p1 . . . pT]⊤ for pi ∈

Rd. Accounting for the positional embeddings as input, a single Transformer attention head can be

expressed as:

ftf-pos(X,P;WV,WQK) := σ
(
W⊤

V (X+ P)⊤softmax
(
(X+ P)W⊤

QK(xτ + pτ)
))

.

For a fixed positional embedding P, let us define

Ftf-pos(P) := {X→ ftf-pos(X,P;WV,WQK) : ‖WV‖2,1 ≤ B2,1V , ‖WV‖ ≤ BV, ‖W⊤
QK‖2,1 ≤ B2,1QK}

. Position embedding just impacts the input into the covering bound argument which effects the

bound in terms of the
∥∥P⊤∥∥2,∞ as given below,

Lemma A.11. For all X(1), . . . ,X(m) ∈ RT×d such that
∥∥∥X(i)⊤

∥∥∥
2,∞
≤ BX for all i ∈ [m], and

P ∈ RT×d such that ‖P⊤‖2,∞ ≤ BP, the covering number ofFtf-pos(P) satisfies

logN∞(Ftf-pos(P); ε;X(1), . . . ,X(m), ‖·‖2) ≲ (Lσ(BX+BP))2·

(
(B2,1V )

2
3 + (2B2,1QKBV(BX + BP))

2
3

)3
ε2

· log(dmT).
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Proof. Observe that ftf-pos(X,P;WV,WQK) = ftf-head(X+ P;WV,WQK). Thus we have,

logN∞

(
Ftf-pos(P); ε;

{
(X(i))

}m

i=1
, ‖ · ‖2

)
= logN∞

(
Ftf-head; ε;

{
X(i) + P

}m

i=1
, ‖ · ‖2

)
.

For all i ∈ [m],
∥∥(X(i) + P)⊤

∥∥
2,∞ ≤

∥∥∥X(i)⊤
∥∥∥
2,∞

+
∥∥P⊤∥∥2,∞ ≤ BX + BP. Therefore, using

Corollary 4.9, we get the desired result.

Therefore our bounds go through for fixed positional embeddings. If we were to train the em-

beddings, we would need a much finer cover on the embeddings which could incur a T dependence.

A.1.6 Capacity of multiple parallel heads

In virtually all practical applications of Transformers since their inception, instead of using one set

of weights for an attention head, there are parallel attention heads, which have separate identically-

shaped parameters; their outputs are concatenated. For the purposes of this analysis, suppose we

have

ftf-heads
(
X;
{
W[h]

V ,W[h]
QK

}H

h=1

)
:=

H∑
h=1

ftf-head
(
X;W[h]

V ,W[h]
QK

)
.

Let us define the class of multi-head self-attention withH heads as

Ftf-heads :=
{
X 7→ ftf-heads

(
X;
{
W[h]

V ,W[h]
QK

}H

h=1

)
:

∀h ∈ [H],
∥∥∥W[h]

V

∥∥∥
2,1
≤ B2,1V

[h]
,
∥∥∥W[h]

V

∥∥∥ ≤ B[h]V ,

∥∥∥∥W[h]
QK

⊤
∥∥∥∥
2,1
≤ B2,1QK

[h]}
.

Lemma A.12. For all X(1), . . . ,X(m) ∈ RT×d such that
∥∥∥X(i)⊤

∥∥∥
2,∞
≤ BX for all i ∈ [m], the

covering number ofFtf-heads satisfies

logN∞(Ftf-heads; ε;X(1), . . . ,X(m), ‖·‖2) ≲ (LσBX)2·

(∑H
h=1(B

2,1
V

[h]
)
2
3 + (2B2,1QK

[h]
B[h]V )

2
3

)3
ε2

·log(dmT).
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Proof. For all h ∈ [H], let Ch be an εh-covering ofFtf-head with weight bounds corresponding

to head h. Since ftf-heads
(
X;
{
W[h]

V ,W[h]
QK

}H

h=1

)
=
∑H

h=1 ftf-head
(
X;W[h]

V ,W[h]
QK

)
, we have

C := C1 × . . . × CH* is an
(∑H

h=1 εh

)
-covering forFtf-heads. Using Corollary 4.9 (and optimizing

for εh using Lemma A.8, by breaking them into individual errors for each head), we have

log |C| =
H∑
h=1

log |Ch| ≤
H∑
h=1

≤ (LσBX)2 ·

(∑H
h=1(B

2,1
V

[h]
)
2
3 + (2B2,1QK

[h]
B[h]V )

2
3

)3
ε2

· log(dmT).

To see the dependence onH, consider the setting where the weight bounds are the same for each

head (dropping the [h] subscript), then we get,

logN∞(Ftf-heads; ε;X(1), . . . ,X(m), ‖·‖2) ≲ (LσBX)2 ·H3 ·

(
(B2,1V )

2
3 + (2B2,1QKBV)

2
3

)3
ε2

· log(dmT).

A.1.7 Capacity of multi-layer Transformers

This section analyzes the capacity of an L-layer Transformer. Let us denote the weights of layer

i byW(i) :=
{
W(i)

Q ,W(i)
K ,W(i)

V ,W(i)
C

}
such that

∥∥∥∥W(i)
K W(i)

Q
⊤
∥∥∥∥
2
≤ B(i)QK,

∥∥∥W(i)
V

∥∥∥
2
≤

B(i)V ,
∥∥∥W(i)

C

∥∥∥
2
≤ B(i)C and

∥∥∥∥W(i)
K

⊤
W(i)

Q

∥∥∥∥
2,1
≤ B2,1QK

(i)
,
∥∥∥W(i)

V

∥∥∥
2,1
≤ B2,1V

(i)
and

∥∥∥W(i)
C

∥∥∥
2,1
≤

B2,1C
(i)
. Let us further denote the set of weights up to layer i byW1:i = (W(1), . . . ,Wi−1). Let the

input representation of layer i be g(i)tf-head(X;W
1:i). We inductively define gwith g(1)tf-head(X;W

1:1) =

*Here,× denotes the Cartesian product: the functions obtained by using the every combination of
parameters of each individual cover.
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X

g(i+1)tf-head
(
X;W1:i+1) = Πnorm

(
σ
(
Πnorm

(
f
(
g(i)tf-head

(
X;W1:i) ;W(i)

)))
W(i)

C

)
with

f
(
Z; {WQ,WK,WV,WC}

)
= RowSoftmax

(
ZWQ (ZWK)

⊤
)
ZWV,

where Πnorm is applied row-wise. Our final output is gtf-scalar(X;W1:L+1,w) = w⊤g(L)tf-head
(
X;W1:L+1) [CLS]

for ‖w‖ ≤ Bw.

In order to construct a cover, we will first bound the distance between the function gwith differ-

ent weight parametersW1:L+1 and Ŵ1:L+1. This bound will depend on the closeness of the param-

eters which will allow us to construct a cover of the network in an iterative fashion by constructing

covers of each layer.

Lipschitzness of the network

To bound the Lipschitzness of the network, we will first bound the distance between fwith different

weights and inputs.

Lemma A.13 (Instantiation of Lemma 4.7). For anyWK, ŴK,WV, ŴV,WQ, ŴQ ∈ Rd×k, for

all Z ∈ RT×d such that
∥∥Z⊤∥∥

2,∞ ≤ 1,

∥∥∥∥(f (Z; {WQ,WK,WV, ·}
)
− f
(
Z; {ŴQ, ŴK, ŴV, ·}

))⊤∥∥∥∥
2,∞

≤ 2 ‖WV‖2
∥∥∥(WQW⊤

K − ŴQŴ⊤
K

)
Z⊤
∥∥∥
2,∞

+
∥∥∥(WV − ŴV)

⊤Z⊤
∥∥∥
2,∞
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Proof. Consider a fixed row τ of the output of the functions,

∥∥∥f (Z; {WQ,WK,WV, ·}
)
[τ]− f

(
Z; {ŴQ, ŴK, ŴV, ·}

)
[τ]
∥∥∥

=
∥∥∥W⊤

VZ⊤softmax
(
ZWKW⊤

Q zτ
)
− Ŵ⊤

VZ⊤softmax
(
ZŴKŴ⊤

Q zτ
)∥∥∥

By triangle inequality:

≤
∥∥∥W⊤

VZ⊤
(
softmax

(
ZWKW⊤

Q zτ
)
− softmax

(
ZŴKŴ⊤

Q zτ
))∥∥∥

+
∥∥∥(WV − ŴV)

⊤Z⊤softmax
(
ZŴKŴ⊤

Q zτ
)∥∥∥

Using ‖Pv‖ ≤ ‖P‖2,∞ ‖v‖1:

≤
∥∥∥W⊤

VZ⊤
∥∥∥
2,∞

∥∥∥softmax
(
ZWKW⊤

Q zτ
)
− softmax

(
ZŴKŴ⊤

Q zτ
)∥∥∥

1

+
∥∥∥(WV − ŴV)

⊤Z⊤
∥∥∥
2,∞

∥∥∥softmax
(
ZŴKŴ⊤

Q zτ
)∥∥∥

1

By Corollary A.7,
∥∥Z⊤∥∥

2,∞ ≤ 1, ‖PQ‖2,∞ ≤ ‖P‖2‖Q‖2,∞, and ‖P⊤‖2 = ‖P‖2:

≤ 2 ‖WV‖2
∥∥∥ZWKW⊤

Q zτ − ZŴKŴ⊤
Q zτ
∥∥∥
∞

+
∥∥∥(WV − ŴV)

⊤Z⊤
∥∥∥
2,∞

≤ 2 ‖WV‖2
∥∥∥(WQW⊤

K − ŴQŴ⊤
K

)
Z⊤
∥∥∥
2,∞

+
∥∥∥(WV − ŴV)

⊤Z⊤
∥∥∥
2,∞

.

Lemma A.14. For anyWK,WV,WQ ∈ Rd×k, for all Z, Ẑ ∈ RT×d such that
∥∥Z⊤∥∥

2,∞ ≤

1, ‖Ẑ⊤‖2,∞ ≤ 1,

∥∥∥∥(f (Z; {WQ,WK,WV, ·}
)
− f
(
Ẑ; {WQ,WK,WV, ·}

))⊤∥∥∥∥
2,∞

≤ ‖WV‖2
(
1+ 4

∥∥∥WKW⊤
Q

∥∥∥
2

)∥∥∥(Z− Ẑ)⊤
∥∥∥
2,∞

.
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Proof. Consider a fixed row τ of the output of the functions,

∥∥∥f (Z; {WQ,WK,WV, ·}
)
[τ]− f

(
Ẑ; {WQ,WK,WV, ·}

)
[τ]
∥∥∥

=
∥∥∥W⊤

VZ⊤softmax
(
ZWKW⊤

Q zτ
)
−W⊤

V Ẑ⊤softmax
(
ẐWKW⊤

Q ẑτ
)∥∥∥

By triangle inequality:

≤
∥∥∥∥W⊤

V

(
Z− Ẑ

)⊤
softmax

(
ZWKW⊤

Q zτ
)∥∥∥∥+ ∥∥∥W⊤

V Ẑ⊤
(
softmax

(
ZWKW⊤

Q zτ
)
− softmax

(
ẐWKW⊤

Q ẑτ
))∥∥∥

Using ‖Pv‖ ≤ ‖P‖2,∞‖v‖1:

≤
∥∥∥W⊤

V

(
Z− Ẑ

)∥∥∥
2,∞

∥∥∥softmax
(
ZWKW⊤

Q zτ
)∥∥∥

1

+
∥∥∥W⊤

V Ẑ⊤
∥∥∥
2,∞

∥∥∥softmax
(
ZWKW⊤

Q zτ
)
− softmax

(
ẐWKW⊤

Q ẑτ
)∥∥∥

1

By Corollary A.7,
∥∥∥Ẑ⊤

∥∥∥
2,∞
≤ 1 and ‖PQ‖2,∞ ≤ ‖P‖2‖Q‖2,∞:

≤ ‖WV‖2
∥∥∥(Z− Ẑ)⊤

∥∥∥
2,∞

+ 2 ‖WV‖2
∥∥∥ZWKW⊤

Q zτ − ẐWKW⊤
Q ẑτ
∥∥∥
∞

By triangle inequality:

≤ ‖WV‖2
∥∥∥(Z− Ẑ)⊤

∥∥∥
2,∞

+ 2 ‖WV‖2
(∥∥∥(Z− Ẑ)WKW⊤

Q zτ
∥∥∥
∞

+
∥∥∥ẐWKW⊤

Q (zτ − ẑτ)
∥∥∥
∞

)
Since

∥∥∥Ẑ⊤
∥∥∥
2,∞
≤ 1 and ‖Pv‖∞ ≤ ‖P⊤‖2,∞‖v‖:

≤ ‖WV‖2
(
1+ 4

∥∥∥WKW⊤
Q

∥∥∥
2

)∥∥∥(Z− Ẑ)⊤
∥∥∥
2,∞

.

With the above lemmas, we are ready to prove the effect of change of weights on g.
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Lemma A.15. For anyWi+1
1 , Ŵi+1

1 satisfying the norm constraints,

∥∥∥∥(g(i+1)tf-block(X;W
1:i+1)− g(i+1)tf-block(X; Ŵ

1:i+1)
)⊤∥∥∥∥

2,∞

≤
∥∥∥∥(W(i)

C − Ŵ(i)
C

)⊤
σ
(
Πnorm

(
f
((

X; Ŵ1:i
)
; Ŵ(i)

)))⊤∥∥∥∥
2,∞

+ LσB
(i)
C B(i)V

(
1+ 4B(i)QK

)∥∥∥∥(g(i)tf-block (X;W1:i)− g(i)tf-block
(
X; Ŵ1:i

))⊤∥∥∥∥
2,∞

+ 2LσB
(i)
C B(i)V

∥∥∥∥(W(i)
Q W(i)

K
⊤
− Ŵ(i)

Q Ŵ(i)
K

⊤
)
g(i)tf-block

(
X; Ŵ1:i

)⊤∥∥∥∥
2,∞

+ LσB
(i)
C

∥∥∥∥(WV − ŴV)
⊤g(i)tf-block

(
X; Ŵ1:i

)⊤∥∥∥∥
2,∞

.

Proof. Unrolling one layer, we have

∥∥∥∥(g(i+1)tf-head
(
X;W1:i+1)− g(i+1)tf-head

(
X; Ŵ1:i+1

))⊤∥∥∥∥
2,∞

=
∥∥∥(Πnorm

(
σ
(
Πnorm

(
f
(
g(i)tf-head

(
X;W1:i) ;W(i)

)))
W(i)

C

)
−Πnorm

(
σ
(
Πnorm

(
f
(
g(i)tf-head

(
X; Ŵ1:i

)
; Ŵ(i)

)))
Ŵ(i)

C

))⊤∥∥∥∥
2,∞

Using Lemma A.9 for each row:

≤
∥∥∥∥W(i)

C
⊤
σ
(
Πnorm

(
f
(
g(i)tf-head

(
X;W1:i) ;W(i)

)))⊤
− Ŵ(i)

C
⊤
σ
(
Πnorm

(
f
(
g(i)tf-head

(
X; Ŵ1:i

)
; Ŵ(i)

)))∥∥∥∥
2,∞

By triangle inequality for each row:

≤
∥∥∥∥W(i)

C
⊤ (

σ
(
Πnorm

(
f
(
g(i)tf-head

(
X;W1:i) ;W(i)

)))
− σ

(
Πnorm

(
f
(
g(i)tf-head

(
X; Ŵ1:i

)
; Ŵ(i)

))))⊤∥∥∥∥
2,∞︸ ︷︷ ︸

(A)

+

∥∥∥∥(W(i)
C − Ŵ(i)

C

)⊤
σ
(
Πnorm

(
f
(
g(i)tf-head

(
X; Ŵ1:i

)
; Ŵ(i)

)))⊤∥∥∥∥
2,∞

.

Let us focus on term (A).
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Bounding the norm per row:

(A) ≤
∥∥∥W(i)

C

∥∥∥
2

∥∥∥∥σ (Πnorm

(
f
(
g(i)tf-head

(
X;W1:i) ;W(i)

)))⊤
− σ

(
Πnorm

(
f
(
g(i)tf-head

(
X; Ŵ1:i

)
; Ŵ(i)

)))⊤∥∥∥∥
2,∞

Since σ is Lσ-Lipschitz and
∥∥∥W(i)

C

∥∥∥
2
≤ B(i)C , for each row:

≤ LσB
(i)
C

∥∥∥∥Πnorm

(
f
(
g(i)tf-head

(
X;W1:i) ;W(i)

))⊤
−Πnorm

(
f
(
g
(
X; Ŵ1:i

)
; Ŵ(i)

))⊤∥∥∥∥
2,∞

Using Lemma A.9 for each row:

≤ LσB
(i)
C

∥∥∥∥f(g(i)tf-head (X;W1:i) ;W(i)
)⊤
− f
(
g(i)tf-head

(
X; Ŵ1:i

)
; Ŵ(i)

)⊤∥∥∥∥
2,∞

By triangle inequality:

≤ LσB
(i)
C

∥∥∥∥f(g(i)tf-head (X;W1:i) ;W(i)
)⊤
− f
(
g(i)tf-head

(
X; Ŵ1:i

)
;W(i)

)⊤∥∥∥∥
2,∞

+ LσB
(i)
C

∥∥∥∥f(g(i)tf-head (X; Ŵ1:i
)
;W(i)

)⊤
− f
(
g(i)tf-head

(
X; Ŵ1:i

)
; Ŵ(i)

)⊤∥∥∥∥
2,∞

By Lemma A.13 and A.14 and norm bounds on the matrices:

≤ LσB
(i)
C B(i)V

(
1+ 4B(i)QK

)∥∥∥∥g(i)tf-head (X;W1:i)⊤ − g
(
X; Ŵ1:i

)⊤∥∥∥∥
2,∞

+ 2LσB
(i)
C B(i)V

∥∥∥∥(W(i)
Q W(i)

K
⊤
− Ŵ(i)

Q Ŵ(i)
K

⊤
)
g(i)tf-head

(
X; Ŵ1:i

)⊤∥∥∥∥
2,∞

+ LσB
(i)
C

∥∥∥∥(WV − ŴV)
⊤g(i)tf-head

(
X; Ŵ1:i

)⊤∥∥∥∥
2,∞

.

Combining the above gives us the desired result.

Lastly, we take account of the last linear weight and observe that,

Lemma A.16. For anyW1:L+1, Ŵ1:L+1 and w, ŵ,

∣∣∣gtf-scalar (X;W1:L+1,w
)
− gtf-scalar

(
X; Ŵ1:L+1, ŵ

)∣∣∣
≤ ‖w‖

∥∥∥∥g(L+1)tf-block
(
X;W1:L+1)

[CLS]
− g(L+1)tf-block

(
X; Ŵ1:L+1

)
[CLS]

∥∥∥∥+ ∣∣∣∣(w− ŵ)⊤g(L+1)tf-block

(
X; Ŵ1:L+1

)
[CLS]

∣∣∣∣ .
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Proof. Observe that,

∣∣∣gtf-scalar (X;W1:L+1,w
)
− gtf-scalar

(
X; Ŵ1:L+1, ŵ

)∣∣∣
=

∣∣∣∣w⊤g(L+1)tf-block
(
X;W1:L+1)

[CLS]
− ŵ⊤g(L+1)tf-block

(
X; Ŵ1:L+1

)
[CLS]

∣∣∣∣
By triangle inequality:

≤
∣∣∣∣w⊤

(
g(L+1)tf-block

(
X;W1:L+1)

[CLS]
− g(L+1)tf-block

(
X; Ŵ1:L+1

)
[CLS]

)∣∣∣∣+ ∣∣∣∣(w− ŵ)⊤g(L+1)tf-block

(
X; Ŵ1:L+1

)
[CLS]

∣∣∣∣
Bounding the inner product by norms:

≤ ‖w‖
∥∥∥∥g(L+1)tf-block

(
X;W1:L+1)

[CLS]
− g(L+1)tf-block

(
X; Ŵ1:L+1

)
[CLS]

∥∥∥∥+ ∣∣∣∣(w− ŵ)⊤g(L+1)tf-block

(
X; Ŵ1:L+1

)
[CLS]

∣∣∣∣ .

Constructing the cover

The cover construction follows the standard recipe of composing covers per layer (as in Bartlett et al.

(2017)).

Theorem A.17. LetF (L)
tf-scalar represent the class of functions of L-layer Transformer blocks satisfying

the norm bounds (specified before) followed by linear layer on the [CLS] token. Then, for all X(i)

logN∞(F (L)
tf-scalar; ε;X

(1), . . . ,X(m), ‖ · ‖2) ≲

log(dmT)
ε2

×

(
B

2
3
w +

L∑
i=1

αi
2
3

(
B2,1C

(i)
2
3
+ d

2
3

(
2LσB

(i)
C B(i)V B2,1QK

(i)) 2
3
+ k

2
3

(
LσB

(i)
C B2,1V

(i)) 2
3
))3

where αi =
∏

j<i LσB
(j)
C B(j)V (1+ 4B(j)QK).

Proof. Our goal is to show that for every ε > 0, and collection of inputs X(1), . . . ,X(m), there is a

cover C of vectors inR(m) such that for allW1:L+1 and w satisfying the norm bounds, there is some

v ∈ C such that maxi |gtf-scalar(X(i);W1:L+1,w)− v| ≤ ε.
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In each layer of the transformer,W(i)
Q andW(i)

K always appear together in the formW(i)
K W(i)

Q
⊤
.

Therefore, we will overload notation and defineW(i)
QK : W(i)

K W(i)
Q

⊤
. Our cover C will be proper,

consisting of vectors of the form (gtf-scalar(X(i); Ŵ1:L+1, ŵ))i∈[m]. We will build the cover iteratively

by finding finite collections of matrices Ŵ1:i for each layer.

First observe that for any collection of Z(1), . . . ,Z(m) ∈ RT×d1 , and anyW, Ŵ ∈ Rd1×d2 ,

max
i∈[m]

∥∥∥W⊤Z(i)⊤ − Ŵ⊤Z(i)⊤
∥∥∥
2,∞

= max
i∈[m],t∈[T]

∥∥∥W⊤z(i)t − Ŵ⊤z(i)t
∥∥∥ .

This crucially allows us to aggregate over the samples and context length. In particular, we can apply

Lemma 4.10 with the input vectors (z(i)t )i∈[m],t∈[T]; a total ofmT input vectors. Specifically, for any

ε andW(d1, d2, α) := {W ∈ Rd1×d2 | ‖W‖2,1 ≤ α}with fixed Z(i) satisfying
∥∥∥Z(i)⊤

∥∥∥
2,∞
≤ 1,

Lemma 4.10 gives us such a cover.

First let us build a cover for one Transformer layer with inputs Z(1), . . . ,Z(m). We will begin

with creating an εV-cover ŴV for the function class of linear transformations given byWV : {W ∈

Rd×k, ‖W‖2,1 ≤ α, ‖W‖2 ≤ s} and εQK-cover ŴQK forWQK := {W ∈ Rd×d,
∥∥W⊤∥∥

2,1 ≤

β, ‖W‖2 ≤ r} and inputs Z(1), . . . ,Z(m). For each pair of ŴV ∈ ŴV and ŴQK ∈ ŴQK, we

construct an εC-cover ŴC(ŴV, ŴQK) forWC : {W ∈ Rk×d, ‖W‖2,1 ≤ γ, ‖W‖2 ≤ c} and

inputs
{
σ
(
Πnorm

(
f
(
Z(i); ŴV, ŴQK

)))}m

i=1
. Our final cover is

Ŵ :=
{
(ŴV, ŴQK, ŴC) : ŴV ∈ ŴV, ŴV ∈ ŴV, ŴC ∈ ŴC(ŴV, ŴQK)

}
.

Using Lemma A.15, we can show that Ŵ is an ε-cover for g(·; {WV,WQK,WC}) and inputs

Z(1), . . . ,Z(m) where

ε = εC + 2LσcsεQK + LσcεV.
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Using Lemma 4.10, the size of the cover is

|Ŵ| ≤ |ŴV||ŴQK| max
ŴV∈ŴV

ŴQK∈ŴQK

∣∣∣ŴC(ŴV, ŴQK)
∣∣∣

=⇒ log |Ŵ| ≲
(
α2

ε2V
+

β2

ε2QK
+

γ2

ε2C

)
log(dmT).

We are now ready to inductively construct a cover for the deeper network. Suppose we have a

ε(i)-cover Ŵ1:i for g(·;W1:i) on X(1), · · · ,X(m). We show how to construct an ε(i+1)-cover for

g(·;W1:i+1). For every element Ŵ1:i ∈ Ŵ1:i we construct a
(
ε
(i)
C + 2LσB

(i)
C B(i)V ε

(i)
QK + LσB

(i)
C ε

(i)
V

)
-

cover Ŵi(Ŵ1:i) for the transformer layer (as above) on inputs
{
g(X(j); Ŵ1:i)

}m

j=1
. Consider the

cover

Ŵ1:i+1 :=
{
(Ŵ1:i, Ŵ(i)) : Ŵ1:i ∈ Ŵ1:i, Ŵ(i) ∈ Ŵi(Ŵ1:i)

}
.

By Lemma A.15, this gives,

ε(i+1) = LσB
(i)
C B(i)V (1+ 4B(i)QK)ε

(i) + ε
(i)
C + 2LσB

(i)
C B(i)V ε

(i)
QK + LσB

(i)
C ε

(i)
V .

The size of the cover is

|Ŵ1:i+1| ≤ |Ŵ1:i| max
Ŵ1:i∈Ŵ1:i

∣∣∣Ŵi(Ŵ1:i)
∣∣∣ .

Inductively applying this, we get

ε(L+1) =

L∑
i=1

∏
j<i

LσB
(j)
C B(j)V (1+ 4B(j)QK)

(ε(i)C + 2LσB
(i)
C B(i)V ε

(i)
QK + LσB

(i)
C ε

(i)
V

)

=

L∑
i=1

αi
(
ε
(i)
C + 2LσB

(i)
C B(i)V ε

(i)
QK + LσB

(i)
C ε

(i)
V

)
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where αi =
∏

j<i LσB
(j)
C B(j)V (1+ 4B(j)QK).

The size of the cover is

log
(
|Ŵ1:L+1|

)
≤

L∑
i=1

B2,1V
(i)2

ε
(i)
V

2 +
B2,1QK

(i)2

ε
(i)
QK

2 +
B2,1C

(i)2

ε
(i)
C

2

 log(dmT).

Notice that the layer-normmaintains the norm bound on the inputs. Lastly, we need to cover the

linear layer on the [CLS] token and compose it with the cover of g1:L (as before). Using Lemma A.10

and A.16, we can get the final ε-cover C with

ε = Bw
L∑
i=1

αi
(
ε
(i)
C + 2LσB

(i)
C B(i)V ε

(i)
QK + LσB

(i)
C ε

(i)
V

)
+ εw

and size

log |C| ≲ B2w log(m)

ε2w
+

L∑
i=1

B2,1V
(i)2

ε
(i)
V

2 +
B2,1QK

(i)2

ε
(i)
QK

2 +
B2,1C

(i)2

ε
(i)
C

2

 log(dmT).

Using Lemma A.8, the size of the cover for fixed ε gives us the desired result.

A.2 Sparse function representation via bounded-norm Transformers

A.2.1 Setup

Reductions from Boolean functions to Transformers. In order to establish our func-

tion approximation results, we must first define a canonical mapping between length-T Boolean

strings b ∈ {0, 1}T and Transformer inputs X ∈ RT×d. The key point (which has also been con-

sidered since the inception of the Transformer (Vaswani et al., 2017), and continues to be a crucial

consideration in practice (Dosovitskiy et al., 2020)) is that the network’s permutation-equivariant
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symmetry needs to be broken by assigning different embeddings to different indices of b. There are

several possible natural choices here, which are all of practical interest:

• Deterministic positional embeddings. Fix positional embedding matrices P ∈ RT×d,E ∈

R{0,1}×d, and a special direction v[CLS] ∈ Rd, such that the T + 3 vectors {Pt,:}Tt=1 ∪

{Ej,:}j∈0,1 ∪ {v[CLS]} are an approximately orthonormal basis forRd (see below). The in-

put to the Transformer is then X = Eb + P, where Eb ∈ RT×d such that [Eb]t,: = Ebt,:

for each t ∈ [T]. In the ftf-scalar formulation, we choose the auxiliary input x[CLS] to be the

constant vector v[CLS]. This closely matches applications of Transformers in NLP (Vaswani

et al., 2017).

• Trainable positional embeddings. Like the above, but P is a trainable parameter; we still re-

quire approximate orthogonality of {Ej,:}j∈0,1 ∪ {v[CLS]}. It is also possible to consider

the case where E and v[CLS] are trainable (matching the way token embeddings are trained

in practice). This becomes important in the regime of large vocabulary sizes that require

embeddings to capture shared information between tokens; however, this is not necessary

for our constructions, as we limit our consideration to binary tokens. This simplifies our

constructions and improves statistical rates; additionally, it is a popular and well-studied al-

ternative (Vaswani et al., 2017; Devlin et al., 2018; Radford et al., 2018, 2019; Brown et al.,

2020).

• Bag of vectors. Fix a matrixV ∈ RT×d with approximately orthogonal rows (like the deter-

ministic P), but choose the Transformer input

X := Vdiag(b).

This construction replaces positional embeddings with positional “indicator vectors” which
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can be swapped between any of the Transformer’s input positions. It has the advantage of

being symmetric with respect to permutation of the Transformer’s input positions: it turns

out that

ftf-scalar(Vdiag(b)) = ftf-scalar(VΠdiag(b)),

for any T × T permutation matrix Π. It is also the most natural construction when consid-

ering the composition of sparse Boolean functions across multiple layers: a layer can output

combinations of the basis rows vi for further function composition, like Boolean gates.

Approximately orthonormal basis. Each of the Boolean function approximation con-

structions will rely on a basis set of vectors, which will be used as positional embeddings (or the

variable indices in the bag-of-vectors construction). We will fix a set of approximately orthonormal

vectors {vi : ‖vi‖ = 1}T′
i=1 inRd: for each i 6= j, we have |v⊤i vj| ≤ Δ. When Δ = 0, the maximal

T′ for which such a set exists is d; for Δ ∈ (0, 12), the Johnson-Lindenstrauss lemma (Johnson et al.,

1986) implies that the maximal set of is of size exp(Θ(dΔ2)). For given choices of d,Δ and a max-

imal {v1, . . . , vT′}, our construction is valid for contexts of length T ≤ T′. For the special vectors

e0, e1, v[CLS], we will assume that these are exactly orthogonal to the vi and each other, so that the vi

must be a basis in dimension at least d − 3. This is for clarity only– it reduces the number of error

terms to propagate through the analysis.

Self-attention block. In each construction (which specifies an input X ∈ RT×d, we will

specify the parametersWQ,WK,WV,WC,w = e1 of a scalar-output Transformer ftf-scalar, which

takes an input X ∈ R(T+1)×d; the auxiliary token input will be the constant vector x[CLS] :=

v[CLS] ∈ Rd. The internal activation function σ is chosen to be the identity. Summarizing, the
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functional form of ftf-scalar ∈ Ftf-scalar in these constructions is

ftf-scalar(X;WQ,WK,WV,WC, e1) = softmax
(
v⊤[CLS]WQW⊤

KX⊤
)
XWVWCe1.

In the intermediate lemmas, it will also be useful to consider the corresponding attention head out-

put

ftf-head(X;WQ,WK,WV,WC) = softmax
(
v⊤[CLS]WQW⊤

KX⊤
)
XWVWC,

and its projections ftf-head ◦Πdproj onto the first dproj coordinates.

Feedforward networks. We establish some notation for feedforward networks. An L-layer

feedforward network, with activation function σ : R → R and dimensions d1, . . . , dL+1, is pa-

rameterized by weight matricesWi ∈ Rdi+1×di , and maps x ∈ Rd1 to y ∈ RdL+1 , by the iterative

equations

y⊤1 := σ(x⊤W1),

y⊤i+1 := σ(y⊤i Wi), i = 1, . . . ,L− 1,

fmlp(x;W1, . . . ,WL)
⊤ = y⊤ := y⊤L Wi.

When dL+1 = 1, we will use the notation w instead ofWL. It will be convenient to incorporate bias

weights by introducing an extra input coordinateWi ∈ R(di+1+1)×di , and augmenting the linear

function accordingly:

y⊤i Wi 7→ [y⊤i 1]Wi.

Self-attention composedwith a feedforward network. The full definition of the

Transformer layer composes a self-attention layer (ftf-layer : RT×d → RT×d) with a position-wise

feedforward network (fmlp : Rd → Rd). We will use this combination of modules to establish our
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function approximation results: ftf-layer acts as a sparse bottleneck, while fmlp approximates an arbi-

trary function of the selected coordinates. For our single-layer constructions, it is most convenient

to establish notation for a scalar-output Transformer with a feedforward network. To this end, de-

fineFtf+mlp to be the function class with the same Score,Norm, φin functions as inFtf-scalar (thus,

the same parametersWQ,WK,WV), with identity activation function, but a feedforward neural

network replacing the linear φout and w. Concretely, with L = 3 and the ReLU activation function

(·)+,Ftf+mlp contains functions of the form

ftf+mlp(X; θ) =
(
(y⊤W1)+W2

)
+
w,

y = softmax
(
v⊤[CLS]WQW⊤

KX⊤
)
XWVWCw,

with parameters θ := (WQ,WK,WV,WC,W1,W2,w).

Multiple self-attention heads. The final component we will need for the function ap-

proximation setup is multi-headed self-attention. We will extend the definition of the single-headed

ftf-head to

ftf-heads
(
X;
{
W[h]

Q ,W[h]
K ,W[h]

V ,W[h]
C

}H

h=1

)
:=

H∑
h=1

ftf-head
(
X;W[h]

Q ,W[h]
K ,W[h]

V ,W[h]
C

)
,

and substitute this definition into ftf+mlp when discussing a multi-headed construction.

Classes and properties of Boolean functions. We will call a Boolean function f :

{0, 1}T → Y I-sparse if it only depends on a fixed subset I ⊆ [T] of its inputs:

bi = b′i ∀i ∈ I =⇒ f(b) = f(b′).
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Overloading notation, if I = s, we will also call f s-sparse. We will call an I-sparse Boolean function

f symmetric if its value is invariant under permutation of the indices in I:

|{i ∈ I : bi = 1}| = |{i ∈ I : b′i = 1}| =⇒ f(b) = f(b′).

Further, we will call an I-sparse real-valued symmetric Boolean function f : {0, 1}T → Y monotone

if f(b) is monotonically increasing in r := |{i ∈ I : bi = 1}|. If, for some γ > 0, it holds that

f(r+ 1) ≥ f(r) + γ for each r = 0, . . . , s− 1, we call f γ-strictly monotone. A vector-valued I-sparse

Boolean function f : {0, 1}T → Rdf is γ-injective if

∥∥f(b)− f(b′)
∥∥
∞ ≥ γ

for each b, b′ that differ at some position i ∈ I ; f is called B-bounded if ‖f(b)‖∞ ≤ B for all b ∈

{0, 1}T.

Uniform approximation. For some ε ≥ 0 and a function f : {0, 1}T → Rd, we say that

f̂ ∈ F ε-uniformly approximates f under the mapping b 7→ X(b) if

∥∥∥̂f(X(b))− f(b)
∥∥∥
∞
≤ ε, ∀b ∈ {0, 1}T.

A.2.2 Results

We give an overview of the function approximation results under each input mapping b 7→ X(b), as

a multi-part proposition:

Proposition A.18 (Sparse variable creation with Transformers). The function classesFtf-scalar,Ftf+mlp

contain the following classes of sparse Boolean functions:
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• Deterministic positional embeddings: For any I ,Ftf-scalar can approximate a particular

monotone symmetric I-sparse f, with Transformer weight norm bounds from the real-

valued construction in Lemma A.19. Ftf+mlp with 1 head can exactly represent any sym-

metric s-sparse f, with the same bounds on Transformer weight norms, and feedforward

network weight norms scaling asO(poly(s)). Ftf+mlp with s heads can exactly represent any

s-sparse f, with Transformer weight norm bounds from the vector-valued construction in

Lemma A.19, and feedforward network weight norms scaling asO(poly(s) · 2s).

• Trainable positional embeddings: For any I ,Ftf-scalar can approximate a particular mono-

tone symmetric I-sparse f, with positional embedding and Transformer weight norm bounds

from the real-valued construction in Lemma A.20. Ftf+mlp with 1 head can exactly repre-

sent any symmetric s-sparse f, with the same bounds on P and Transformer weight norms,

and feedforward network weight norms scaling asO(poly(s)). Ftf+mlp with s heads can

exactly represent any sparse f, with P and Transformer weight norm bounds from the vector-

valued construction in Lemma A.20, and feedforward network weight norms scaling as

O(poly(s) · 2s).

• Bag of vectors: For any I ,Ftf-scalar can approximate a particular monotone symmetric I-

sparse f, with Transformer weight norms from Lemma A.21. Ftf+mlp with 1 head can rep-

resent any symmetric s-sparse f, with the same Transformer weight norm bounds, and feed-

forward network weight norms scaling asO(poly(s)). Ftf+mlp with 1 head can also exactly

represent any s-sparse f, with the same bounds on Transformer weight norms, and feedfor-

ward network weight norms scaling asO(poly(s) · 2s).

The formal statements are obtained by (γ/4)-uniformly approximating a γ-strictly monotone

or γ-injective function with self-attention alone (Lemmas A.19, A.20, A.21), then applying a ro-

bust universal function representation construction (Lemmas A.22, A.23) appropriately. They are
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organized as follows:

Lemma A.19 (Deterministic P, noMLP). Suppose X(b) = P+Eb with deterministic P. Let I ⊆ [T]

such that |I| = s ≤ d, k, and Δ < 1/s. Then, for all 0 < γ ≤ 1, there exists a 1-bounded, (2/s)-

strictly monotone symmetric I-sparse Boolean function gI : {0, 1}T → R and Transformer head

parameters such that ftf-scalar(X(b);WQ,WK,WV,WC,w = e1) (γ/4)-uniformly approximates gI .

The norms satisfy

∥∥WQ
∥∥
F ≤

log
(
8T
γ

)
1− sΔ

, ‖WK‖F ≤ s, ‖WV‖F ≤ 2, ‖WC‖F ≤ 1.

Also, there exists a 1-bounded, 2-injective I-sparse Boolean function g′I : {0, 1}T → Rs and s-headed

Transformer parameters such that ftf-head
(
X(b);

{
W[h]

Q ,W[h]
K ,W[h]

V ,W[h]
C

}s

h=1

)
◦ Πs uniformly

approximates g′I . The norms of each head satisfy

∥∥∥W[h]
Q

∥∥∥
F
≤

log
(
8T
γ

)
1− sΔ

,
∥∥∥W[h]

K

∥∥∥
F
≤ 1,

∥∥∥W[h]
V

∥∥∥
F
≤ 2,

∥∥∥W[h]
C

∥∥∥
F
≤ 1.

Lemma A.20 (Trainable P, noMLP). Suppose X(b) = P + Eb with trainable P. Let I ⊆ [T] such

that |I| = s ≤ d, k. Then, for any 0 < γ ≤ 1, and with the same gI as in Lemma A.19, there

exists P and Transformer head parameters such that ftf-scalar(X(b);WQ,WK,WV,WC,w = e1)

(γ/4)-uniformly approximates gI . The norms satisfy

∥∥∥P⊤∥∥∥
2,1
≤ s,

∥∥WQ
∥∥
F ≤ log

(
8T
γ

)
, ‖WK‖F ≤ 1, ‖WV‖F ≤ 2, ‖WC‖F ≤ 1.

Also, for the same g′I as in Lemma A.19, there exists P and s-headed Transformer parameters such that

ftf-head
(
X(b);

{
W[h]

Q ,W[h]
K ,W[h]

V ,W[h]
C

}s

h=1

)
◦Πs uniformly approximates g′I . The norms of each
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head satisfy

∥∥∥P⊤∥∥∥
2,1
≤ s,

∥∥∥W[h]
Q

∥∥∥
F
≤ log

(
8T
γ

)
,

∥∥∥W[h]
K

∥∥∥
F
≤ 1,

∥∥∥W[h]
V

∥∥∥
F
≤ 2,

∥∥∥W[h]
C

∥∥∥
F
≤ 1.

Lemma A.21 (Bag of vectors, noMLP). Suppose X(b) = V + diag(b). Let I ⊆ [T] such that

|I| = s ≤ d, k, and Δ < 1/s. Then, for all sΔ < γ < 1, there exists an s-bounded, (1/s)-strictly

monotone symmetric I-sparse Boolean function gI : {0, 1}T → R and Transformer head parameters

such that ftf-scalar(X(b);WQ,WK,WV,WC,w = e1) (γ/4)-uniformly approximates gI . The norms

satisfy

∥∥WQ
∥∥
F ≤

log
(
8Ts(1+Δ)
γ−sΔ

)
1− sΔ

, ‖WK‖F ≤ s+ 1, ‖WV‖F ≤ 2s, ‖WC‖F ≤ s.

Also, there exists a 1-bounded, (1/s)-injective I-sparse Boolean function g′I : {0, 1}T → Rs and Trans-

former head parameters such that ftf-head(X(b);WQ,WK,WV,WC) ◦Πs uniformly approximates

g′I . The norms satisfy the same bounds as above.

Lemma A.22 (Monotone to symmetric functions via MLP). Let f : {0, 1}T → R be any real-

valued symmetric s-sparse Boolean function with index set I . LetWQ,WK,WV,WC be the parame-

ters of a function

ftf-head(X;WQ,WK,WV,WC) := softmax
(
v⊤[CLS]WQW⊤

KX⊤
)
XWVWC,

and letΠ1 : Rd → R be the projection onto the first coordinate. Suppose that under some mapping

b 7→ X(b), ftf-head ◦Πs (γ/4)-uniformly approximates a B-bounded γ-strictly monotone symmetric I-

sparse Boolean function g : {0, 1}T → R, for some γ. Then, there exists a function ftf+mlp ∈ Ftf+mlp

with the same weightsWQ,WK,WV,WC, and 3-layer feedforward network weightsW1,W2,w,
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such that

ftf+mlp(X(b)) = f(b), ∀b ∈ {0, 1}T,

with dimensions (d2, d3) = (4(s+ 1), 2(s+ 1)) and weight norms satisfying

‖W1‖∞ ≤
8max(1,B)

γ
, ‖W2‖∞ ≤

8s
γ
, ‖w‖∞ ≤ max

b∈{0,1}T
|f(b)|.

Lemma A.23 (Injective to arbitrary functions via MLP). Let f : {0, 1}T → R be any real-valued

s-sparse Boolean function with index set I such that |I| = s ≤ d. LetWQ,WK,WV,WC be the

parameters of a function

ftf-head(X;WQ,WK,WV,WC) := softmax
(
v⊤[CLS]WQW⊤

KX⊤
)
XWVWC,

and letΠs : Rd → Rs be the projection onto the first s coordinates. Suppose that under some mapping

b 7→ X(b), ftf-head ◦ Πs (γ/4)-uniformly approximates a γ-injective function g : {0, 1}T → Rs

satisfying ‖g(b)‖∞ ≤ B. Then, there exists a function ftf+mlp ∈ Ftf+mlp with the same weights

WQ,WK,WV,WC, and 3-layer feedforward network weightsW1,W2,w, such that

ftf+mlp(X(b)) = f(b), ∀b ∈ {0, 1}T,

with dimensions (d2, d3) = (4s2s, 2 · 2s) and weight norms satisfying

‖W1‖∞ ≤
8max(1,B)

γ
, ‖W2‖∞ ≤

8s
γ
, ‖w‖∞ ≤ max

b∈{0,1}T
|f(b)|.
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A.2.3 Useful lemmas

We will use a construction which approximates a “hard selection” of s indices using the softmax

mixture; for this, we will need to quantify the approximation error when the inputs to the softmax

function are bounded.

Lemma A.24 (Softmax truncation). Let z ∈ (R ∪ {−∞})T such that zt ≥ R for each 1 ≤ t ≤ s,

and zt ≤ 0 for each s + 1 ≤ t ≤ T. Define z′ ∈ (R ∪ {−∞})T so that z′t = zt for 1 ≤ t ≤ s, and

zt = −∞ for s+ 1 ≤ t ≤ T. Then, letting e−∞ = 0 in the definition of softmax(·), we have

∥∥softmax(z′)− softmax(z)
∥∥
1 ≤ 2

T− s
s exp(R)

<
2T

exp(R)
.

Proof. We have

∥∥softmax(z′)− softmax(z)
∥∥
1 =

s∑
t=1

exp(zt)
(

1
1⊤ exp(z′)

− 1
1⊤ exp(z)

)
+

T∑
t=s+1

exp(zt)
1⊤ exp(z)

.

The first summation is equal to

1− 1⊤ exp(z′)
1⊤ exp(z)

≤ T− s
s exp(R)

,

while the same upper bound holds for the second summation, since each term is at most 1
s exp(R) .

Our results on approximating arbitrary sparse Boolean functions will depend on a generic con-

struction for robustly approximating an arbitrary function f : Rd → Rwith a feedforward neural

network. For simplicity of presentation, we use a standard* 3-layer ReLU network construction,

which exactly represents a piecewise constant function in specified regions.

*For example, this follows from the discussion in Chapter 4 of (Nielsen, 2015).
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Lemma A.25 (Exact function representation with a 3-layer ReLU net). Let f : Rdf → R, and

let x1, . . . , xn ∈ Rdf such that ‖xi‖∞ ≤ B for each i ∈ [n],
∥∥xi − xj

∥∥
∞ ≥ 4δ for each i 6= j ∈

[n]. Then, there is a 3-layer feedforward network with ReLU activations, with parametersW1 ∈

R(df+1)×d2 ,W2 ∈ R(d2+1)×d3 ,w ∈ Rd3*, such that

fmlp(xi + z) = f(xi)

for all i ∈ [n] and ‖z‖∞ ≤ δ, where ReLU(x) := x+ = max(0, x) is applied entrywise, with

d2 = 4ndf, d3 = 2n,

‖W1‖∞ ≤
max(1,B)

δ
, ‖W2‖∞ ≤

df
δ
, ‖w‖∞ ≤ max

i∈[n]
|f(xi)|.

Proof. First, we construct a one-dimensional “bump” function basis, and propagate the Lipschitz

constants. A threshold function with a linear “ramp” of width δ can be obtained from a linear com-

bination of 2 ReLU functions:

νδ(x) := (x/δ+ 1)+ − (x/δ)+ =



0 x ≤ −δ

x/δ+ 1 −δ ≤ x ≤ 0

1 x ≥ 0

.

Next, we construct the bump function

ψδ(x) := νδ(x)− νδ(2δ− x).

By this construction, we have ψδ(x) = 1 for 0 ≤ x ≤ 2δ and ψδ(x) = 0 for x ≤ −δ and x ≥ 3δ,

*Here,W1,W2 have bias terms; w does not.
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interpolating linearly on [−δ, 0] and [2δ, 3δ]. Next, define

ψδ(x; x0) := ψδ(x− x0 + δ)

=

(
x− x0

δ
+ 2
)

+

−
(
x− x0

δ
+ 1
)

+

−
(
x0 − x

δ
+ 2
)

+

+

(
x0 − x

δ
+ 1
)

+

so that ψδ(x; x0) = 1 for |x− x0| ≤ δ, ψδ(x; x0) = 0 for |x− x0| ≥ 2δ.

We construct the first layerW1 ∈ R(d+1)×(4nd) using these bump functions: indexing the 4nd

dimension by (h ∈ [4], i ∈ [n], j ∈ [d]), we construct

[W1]:,(1,i,:) :=

 1
δ I

− xi
δ + 2 · 1⊤

 , [W1]:,(2,i,:) :=

 1
δ I

− xi
δ + 1⊤

 ,

[W1]:,(3,i,:) :=

 − 1
δ I

xi
δ + 2 · 1⊤

 , [W1]:,(4,i,:) :=

 − 1
δ I

xi
δ + 1⊤

 ,

so that

(
[x 1]⊤

[
[W1]j,(1,i,:) [W1]j,(2,i,:) [W1]j,(3,i,:) [W1]j,(4,i,:)

])
+
[1 −1 −1 1]⊤ = ψδ(x; [xi]j).

The second layer is used to construct n activations which are indicators of whether x is in the

neighborhood of each xi. For each xi, we will simply average the df one-dimensional indicators for

each coordinate, and implement a threshold function νδ/df(1−x). We chooseW2 ∈ R(4ndf+1)×(2n),

with the 4ndf + 1 dimension indexed by (h, i, j) and an extra bias dimension⊥, and the 2n dimen-

sion indexed by (h′ ∈ {1, 2}, i′ ∈ [n]) so that

[W2](h,i,:),(h′,i′) := [1 −1 −1 1]h · 1[i = i′] · 1
δ
· 1,
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[W2]⊥,(1,i′) := 1−
df
δ
, [W2]⊥,(2,i′) := −

df
δ
.

Finally, the third (output) layer w ∈ R2n, with dimensions indexed by (h ∈ {1, 2}, i ∈ [n]),

multiplies the indicators of each xi by the desired f(xi):

w(1,i) := f(xi), w(2,i) := −f(xi).

For any x0 ∈ Rdf , let Bδ(x0) be the set of x such that ‖x− x0‖∞ ≤ δ. By this construction, for

each x ∈ Bδ(xi), we have f(x) = xi, as required.

Note that we use 3-layer ReLU networks for function approximation in order to minimize the

introduction of unnecessary notation. Some minor remarks:

• It would be routine to replace this construction with any architecture which can represent

an arbitrary function approximately (Hornik et al., 1989; Cybenko, 1989); this includes the

2-layer feedforward networks (and nonlinear activations other than the ReLU) which are

typically used by Transformers in practice.

• It is possible to embed this construction in ftf+mlp with a 2-layer ReLU network, by using

(WC,W1,W2) and introducing a nonlinearity afterWC, without changing the results.

• When df = 1,W2 is unnecessary (one can represent f directly using the bump function

basis).

A.2.4 Beyond Boolean domains

These representational results are stated with a Boolean domain {0, 1}T for clarity and simplicity

of presentation; this is not essential or fundamental to these constructions. Generalizations to the

following input domains are straightforward:
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• Discrete categorical tokens {1, . . . ,M}T. UseM orthogonal token embeddings, instead of

only 2. The “sparse function approximation” construction uses sMs instead of s2s parame-

ters. The smaller (poly(s)-parameter) representation of symmetric Boolean functions has no

clear analogue.

• Continuous inputs on a bounded domain (e.g. [0, 1]T). The (fixed or trainable) positional

embeddings can still select the s sparse indices. Replace the discrete ReLU network construc-

tion with any continuous universal function approximation construction. The “bag-of-

vectors” formulation has no clear analogue.

The capacity results from Section 4.4 hold for any input domain, as long as the embeddings are

bounded in the ‖·‖2,∞ norm. Note that Transformers are predominantly used with discrete inputs.

A.2.5 Proofs

Throughout the constructions in each case, we will refer to standard coordinate bases in several

spaces:

• E0,E1 ∈ Rd denote the embeddings of the 0, 1 tokens E0,:,E1,:.

• e(k)1 , . . . , e(k)k denotes the standard basis inRk.

• e(d)i denotes the standard basis inRd.

• e(T)1 , . . . , e(T)T , e(T)[CLS] denotes the standard basis inRT+1 with the special [CLS] index.

• Recall that the vi form a Δ-approximate orthonormal basis forRd, v[CLS], e0, e1 are exactly

orthogonal to each of them as well as each other, and d is chosen such that these conditions

can be met.

Let n(i) be a unique bijection between I and [s]. Let vI :=
∑

i∈I vi.
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Approximate vector equality. We will use u ≈ε v to denote that two vectors u, v ∈ Rdu

satisfy ‖u− v‖∞ ≤ ε.

Proof of Lemma A.19. We construct attention heads such that the softmax mixture always selects

the indices in I .

Single head, deterministic P.We seek to approximate the 1-bounded, (2/s)-strictly monotone

function
1
s
∑
i∈I

χi,

where χi = +1 if bi = 0 and−1 if bi = 1. Set

WQ := Rv[CLS]e
(k)⊤
1 , WK := vIe

(k)⊤
1 , WV := (E0 − E1)e

(k)⊤
1 , WC := e(k)1 e(d)⊤1 ,

whereRwill be chosen later. Then, by approximate orthogonality,

v⊤[CLS]WQW⊤
KX⊤ = v⊤[CLS]WQW⊤

K (P+ Eb)⊤ = v⊤[CLS]WQW⊤
KP⊤ ≈RsΔ R

∑
i∈I

e(T)⊤i .

By Lemma A.24,

∥∥∥∥∥softmax
(
v⊤[CLS]WQW⊤

KX⊤
)
− 1

s
∑
i∈I

e(T)⊤i

∥∥∥∥∥
1

≤ 2T
exp(R− 2RsΔ)

.

Finally, we have

XWVWC = EbWVWC =

∑
i∈[T]

χie
(T)
i

 e(d)⊤1 ,

so that by Hölder’s inequality,

ftf-head(X) ◦Π1 = softmax
(
v⊤[CLS]WQW⊤

KX⊤
)
XWVWCe

(d)
1 ≈ 2T

exp(R−2RsΔ)

1
s
∑
i∈I

χi.
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To get (γ/4)-uniform approximation, we choose

R =
log
(
8T
γ

)
1− sΔ

.

Multiple heads, deterministic P. For h = 1, . . . , s, and the sameR as above:

W[h]
Q := Rv[CLS]e

(k)⊤
1 , W[h]

K := vn−1(h)e
(k)⊤
1 , W[h]

V := (E0 − E1)e
(k)⊤
2 , W[h]

C := e(k)1 e(d)⊤h .

This is the same construction as above, but each head only selects one of the coordinates in I . Thus,

by the same analysis,

ftf-head(X) ◦Πs ≈ 2T
exp(R−2RsΔ)

∑
i∈I

χie
(d)
n(i).

This function is clearly 1-bounded and 2-injective.

Proof of Lemma A.20. The constructions closely follow Lemma A.19, but are simpler.

Single head, trainable P. For each i ∈ I , set the trainable positional embeddings to be

Pi,: :=


v1 i ∈ I

0 otherwise
.

Set

WQ := Rv[CLS]e
(k)⊤
1 , WK := v1e

(k)⊤
1 , WV := (E0 − E1)e

(k)⊤
1 , WC := e(k)1 e(d)⊤1 .

Now, we have (with equality)

v⊤[CLS]WQW⊤
KX⊤ = R

∑
i∈I

e(T)⊤i ,
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so that Lemma A.24 gives

∥∥∥∥∥softmax
(
v⊤[CLS]WQW⊤

KX⊤
)
− 1

s
∑
i∈I

e(T)⊤i

∥∥∥∥∥
1

≤ 2T
exp(R)

.

Like before, we have

ftf-head(X) ◦Π1 = softmax
(
v⊤[CLS]WQW⊤

KX⊤
)
XWVWCe

(d)
1 ≈ 2T

exp(R)

1
s
∑
i∈I

χi.

To get (γ/4)-uniform approximation, we choose

R = log
(
8T
γ

)
.

Multiple heads, trainable P. For each i ∈ I , set the trainable positional embeddings to be

Pi,: :=


e(d)n(i) i ∈ I

0 otherwise
.

For h = 1, . . . , s, and the sameR as above:

W[h]
Q := Rv[CLS]e

(k)⊤
1 , W[h]

K := e(d)h e(k)⊤1 , W[h]
V := (E0 − E1)e

(k)⊤
1 , W[h]

C := e(k)1 e(d)⊤h .

This is the same construction as above, but each head only selects one of the coordinates in I . Thus,

by the same analysis,

ftf-head(X) ◦Πs ≈ 2T
exp(R)

∑
i∈I

χie
(d)
n(i).

Proof of Lemma A.21. This input mapping does not use position embeddings, and does not need
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multiple heads to implement arbitrary (non-symmetric) functions. The constructed monotone and

injective functions are slightly different, but the proof strategy is very similar. The key difference is

that the softmax mixture is uniform only on the positions i ∈ I where bi = 1.

Bag of vectors, scalar output. The function we will approximate is defined as follows:

gI(r) :=
r− s
r+ 1

, where r =
∑
i∈I

bi, s = |I|.

Note that this function is (1/s)-strictly monotone, and has absolute value bounded by s. Set

WQ := Rv[CLS]e
(k)⊤
1 , WK := (vI + v[CLS])e

(k)⊤
1 ,

WV :=
∑
i∈I

vie
(k)⊤
n(i) − v[CLS]

(∑
i∈I

e(k)n(i)

)⊤

, WC :=
∑
i∈I

e(k)n(i)e
(d)⊤
1 ,

whereRwill be chosen later. Then, by approximate orthogonality,

v⊤[CLS]WQW⊤
KX⊤ ≈RsΔ R

(
v[CLS] +

∑
i∈I

bie
(T)⊤
i

)
,

so that by Lemma A.24,

∥∥∥∥∥softmax
(
v⊤[CLS]WQW⊤

KX⊤
)
− 1

r+ 1

(
e(T)⊤[CLS] +

∑
i∈I

bie
(T)⊤
i

)∥∥∥∥∥
1

≤ 2T
exp(R− 2RsΔ)

.

Finally, we have

XWVWCe
(d)
1 = −se(T)[CLS] +

∑
i∈[T]

bi · v⊤i vI · e
(T)
i ≈sΔ −se(T)[CLS] +

∑
i∈I

bie
(T)
i ,
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so that

|ftf-head(X) ◦Π1 − gI(r)| ≤∥∥∥∥∥softmax
(
v⊤[CLS]WQW⊤

KX⊤
)
− 1

r+ 1

(
e(T)⊤[CLS] +

∑
i∈I

bie
(T)⊤
i

)∥∥∥∥∥
1

(∥∥∥XWVWCe
(d)
1

∥∥∥
∞

+ sΔ
)

+
∥∥∥softmax

(
v⊤[CLS]WQW⊤

KX⊤
)∥∥∥

1
(sΔ)

≤ 2Ts(1+ Δ)
exp(R− 2RsΔ)

+ sΔ.

To get (γ/4)-uniform approximation, we choose

R =
log
(
8Ts(1+Δ)
γ−sΔ

)
1− sΔ

.

Bag of vectors, s-dimensional output.We use the same construction as above, except

WC :=
∑
i∈I

e(k)n(i)e
(d)⊤
n(i) .

This will allow us to approximate the function

g′I(b) =
1

r+ 1
∑
i∈I

(bi − 1)e(d)n(i),

which is (1/s)-injective and has absolute value is bounded by 1. Then, for each i ∈ I , we have

XWVWCe
(d)
i = −e(T)[CLS] + v⊤i vI · e

(T)
i ≈sΔ −e(T)[CLS] + bie

(T)
i .
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Repeating the above analysis for each coordinate, we have

ftf-head(X) ◦Πs ≈ε g′I(r),

where a slightly tighter bound

ε =
2T(1+ sΔ)

exp(R− 2RsΔ)
+ sΔ

comes from the fact that
∥∥∥XWVWCe

(d)
i

∥∥∥
∞
is now bounded by 1 instead of s. The previous choice

ofR suffices for (γ/4)-uniform approximation.

Proof of Lemma A.22. This follows by instantiating Lemma A.25 with δ = γ/8, df = 1, n =

s + 1. Notice that a (γ/4)-uniform approximation of a γ-strictly monotone function satisfies the

conditions needed for Lemma A.25.

Proof of Lemma A.23. This follows by instantiating Lemma A.25 with δ = γ/8, df = s, n = 2s.

Notice that a (γ/4)-uniform approximation of a γ-injective function satisfies the conditions needed

for Lemma A.25.

A.3 Details for experiments

A.3.1 Empirical scaling laws (Figure 4.2)

In this section, we provide details for the sample complexity scaling law experiments, which are

the main empirical verification of the logT dependence of the sample complexity arising from the

analysis.

Data. Synthetic supervised learning tasks corresponding to learning a 3-sparse conjunction were

generated by the protocol described in the main paper, parameterized by sample sizem and context
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T: in each trial, one of the
(T
3
)
subsets of indices was selected uniformly at random*, under i.i.d.

Bernoulli inputs xi ∼ Bern(p). Here, p = (1/2)1/3 was chosen so that the classes are balanced

Pr[y = 0] = Pr[y = 1]. m samples were drawn this distribution to form a training set (rejecting

training sets which were compatible with multiple hypotheses), and 104 samples were drawn from

the same distribution as a holdout validation set. The grid of problem instances was constructed as

follows: T ∈ {100, 150, 200, . . . , 750, 800} ∪ {900, 1000, 1100},m ∈ {50, 60, 70, . . . , 200}.

Training. A 1-layer Transformer network (with a scalar output at a special trainable token

x[CLS] at an extra index [CLS]) was trained with Adam (Kingma & Ba, 2014) and full-batch gra-

dients of the cross entropy loss for binary classification. 40 independent trials were performed

(re-randomizing the dataset generation); each trial was restarted (with fresh random initialization

and dropout masks) 5 times before being labeled as a failure. Cross-validation was performed on a

holdout sample of size 104 every 10 iterations. At the end of 1000 training iterations, the trial was

counted as a success if the maximum validation accuracy throughout training was greater than 0.99.

(In 100% of runs, the training loss was driven to< 10−4, with 100% training accuracy, within 1000

iterations.)

Architecture. Like (Chen et al., 2021a), our experimental setup is based on a popular Py-

Torch implementation (https://github.com/karpathy/minGPT), with some optimizations for

faster 1-layer training and inference. This implementation includes widely-used architectural details

(GeLU activations; dropout) which were not discussed in the theoretical analysis; refer to the refer-

enced repository for details. All hyperparameter settings left undiscussed are taken from the default

settings in this codebase.

*Note that due to the permutation-symmetry of the Transformer architecture (as long as the position
embeddings are initialized with a permutation-symmetric distribution), it is equivalent to select I = [s]. Also,
by symmetry of the initial token embeddings,AND andOR are interchangeable in these experiments and
results.
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Hyperparameters. A fixed architecture was used (d = 64, k = 4, 16 parallel heads), with

trainable positional embeddings initialized with Gaussian entriesN (0, σ2), σ = 0.02, 3 input to-

ken embeddings (corresponding to 0, 1, [CLS]), and 2 output embeddings (corresponding to the

possible labels 0, 1). For regularization mechanisms, typical choices were used: 0.1 for {attention,

embedding, output} dropout; 10−4 weight decay. The Adam optimizer was instantiated with typi-

cal parameters η = 10−3, β1 = 0.9, β2 = 0.999.

Infrastructure and computational costs. All experiments were performed on an inter-

nal cluster, with NVIDIA Tesla P100, NVIDIA Tesla P40, and NVIDIA RTXA6000 GPUs. Each

training run took at most 10 minutes (with most computation time spent on cross-validation), for a

total of∼ 150 GPU-hours.

A.3.2 Other figures

Example training curves. Figure 4.3 (left) shows the best training curves (in terms of high-

est validation accuracy) out of 5 restarts for all 40 replicates, in the settings T = 300,m = 200

and T = 300,m = 50. As the sample sizem decreases, the trained models overfit with higher

probability; when they overfit, they differ significantly in validation accuracy.

Attentionweights. In Figure 4.3, the normalized attention weights at the [CLS]position are

shown for a Transformer model trained for 500 iterations with T = 50,m = 300 (achieving 100%

validation accuracy on 104 holdout samples), for 100 validation samples (which each induce differ-

ent attention weights, shown in the scatter plot). One key difference (for simplicity of visualization)

is that this network only has one attention head, with embedding dimensions d = k = 64.

Parity. These experiments use the same architecture as the main AND experiments, except the.

In the loss curves presented in Figure 4.4, gradient-based training is done on streaming online losses
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(so that there is no training/validation split), with batch size 2048.

A.4 Additional relatedwork

In this section, we discuss some additional related work.

Domains beyond language. We provide a few references on the successful application of

Transformers to domains beyond natural language processing; this frontier is continually and

rapidly evolving.

• With minimal changes compared to the analogous natural language settings, Transformer se-

quence models have been applied to theorem proving (Polu & Sutskever, 2020) and program

synthesis (Chen et al., 2021b).

• Beyond sequence modeling: In self-supervised learning of image representations, the Vision

Transformer (ViT) (Dosovitskiy et al., 2020) has sometimes outperformed older convolution-

based architectures, particularly when pretrained on massive datasets. Further architectural

variants have been proposed for vision and other continuous modalities (Tolstikhin et al.,

2021; Lee-Thorp et al., 2021; Jaegle et al., 2021b,a; d’Ascoli et al., 2021).

• Natural sciences: A state-of-the-art pipeline for protein structure prediction (Jumper et al.,

2021) features a self-attention-based component.

• Reinforcement learning: Transformer architectures have shown promise for planning (Jan-

ner et al., 2021) and offline RL (Chen et al., 2021a).

Expressive power of Transformers. Several works establish results on the representational

power of self-attention architectures in regimes where the statistical guarantees are necessarily weak
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or vacuous (i.e. there are too many functions in the class). Dehghani et al. (2018); Yun et al. (2019);

Bhattamishra et al. (2020a,b) establish universal function approximation and Turing-completeness,

which have been known for previous architectures (Siegelmann & Sontag, 1995). Our work is a sig-

nificantly finer-grained analysis, in which we establish a hierarchy of function classes (indexed by

sparsity s) representable by these architectures, with tight (in terms of T) statistical guarantees. Hron

et al. (2020); Yang (2020) analyze properties of the kernels induced by Transformers at the infinite-

width limit. Quoting the discussion following Theorem 4.1 of (Wei et al., 2021), who show statisti-

cally meaningful approximations of TM using Transformers: “The correct norm-based Rademacher

complexity bound to use for Transformers is unclear.” The connection between Transformers and

circuits also appears in (Elhage et al., 2021; Olsson et al., 2022), with a different technical approach

(interpreting the classes of computations performed by attention weights and heads). Likhosherstov

et al. (2021) analyze the sparsity patterns representable by a self-attention head, with results super-

ficially similar to ours: when the embedding dimension is at least logarithmic in the context length,

all sparse matrices can be approximately realized by an attention head. However, their analysis is not

about the capacity of the function class: it quantifies over the input X, and holds the parameters

(WQ,WK, . . .) to be constant (rather than vice versa). This finding serves as an interesting com-

plement to our result: even though the attention mixture weights can take on exponentially many

sparsity patterns for distinct inputs, the generalization error scales as log(T).

Interpreting attention mixtures. A line of empirical work (“BERTology”) has made

progress on understanding and interpreting state-of-the-art Transformer language models by exam-

ining the activations of their attention mechanisms (Clark et al., 2019; Tenney et al., 2019; Rogers

et al., 2020). In some cases, these works have found instances in which Transformers seem to have

learned features that are reminiscent of (sparse) hand-crafted features used in natural language pro-

cessing, without explicit supervision. Our analysis formalizes the intuition that self-attention heads
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can represent sparse interactions within the context in a statistically meaningful way.

Other theoretical work on self-attention. Kerg et al. (2020) analyze self-attention and

its benefits for learning long-term dependencies by establishing gradient norms bounds and showing

how attention helps address the problem of gradient vanishing in recurrent networks. In contrast

to our results that analyze the statistical and representational properties of attention-based archi-

tectures, this work focuses on the computational aspects of gradient-based methods on recurrent

networks with self-attention.

Other attention-based architectures. Our analysis is amenable to computationally

efficient variants of the Transformer which use parsimonious (e.g. low-rank) approximations of

the softmax kernel, like the Performer (Choromanski et al., 2020). Building upon the success of

modern attention-based architectures, a large body of work (e.g. Goyal et al. (2020, 2021), and the

works cited within) has sought to design architectures which induce model sparsity and modularity.

Our analysis is relevant to any architecture that uses a softmax (or similar) bottleneck for statistical

capacity, and could inform design principles for norm-based capacity control of these architectures.

Synthetic experiments with Transformers. Power et al. (2021) train small Transformer

networks on synthetic algebraic tasks, and discover an abrupt phase transition from overfitting to

correct generalization similar to ours. Tay et al. (2020) propose some synthetic tasks for bench-

marking the ability of Transformer variants to capture long-range dependences. Chen et al. (2021a)

present a synthetic demonstration of extrapolation (inferring a maximum-reward path from ran-

dom walk observations) when using Transformers for offline reinforcement learning. Lu et al.

(2021) probe the transfer learning capabilities of pretrained Transformers, and consider some simple

Boolean tasks. Our experimental protocol of learning sparse Boolean functions provides a simple
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and fundamental setting for elucidating computational and statistical properties of sequence model-

ing architectures.
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B
Hidden Progress

B.1 Additional background, preliminaries, and relatedwork

B.1.1 Parities: orthogonality and computational hardness

For each integer n ≥ 1 and nonempty subset of indices S ⊆ [n], define the (n, S)-parity function

χS(x) =
∏

i∈S xi, i.e. the parity of the bits at the indices in S. We define the (n, S)-parity distribution

DS over examples (x, y) as follows: the features x ∼ Unif({±1}n) are uniform random bits, with
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labels y ∈ {±1} given by the parity function y = χS(x). For 0 ≤ k ≤ n, the corresponding

(n, k)-parity learning problem is the task of identifying an unknown size-k set S (chosen at random),

using samples fromDS. With knowledge of k but not S, a learner must use the labels to distinguish

between
(n
k
)
possible “relevant feature sets”; thus, the statistical limit for this problem is log

(n
k
)
=

Θ(k log n) samples.

This work leverages the parity problem as a “computationally hard case” for identifying the fea-

tures Swhich are relevant to the label. Observe that for any S′ ⊆ [n], it holds that

E
x∼Unif({±1}n)

[
χS(x)χS′(x)

]
= E

(x,y)∼DS

[
χS′(x) y

]
=


1 S′ = S

0 otherwise
. (B.1)

That is, a learner who guesses indices S′ cannot use correlations as feedback to reveal which (or how

many) indices in S′ are correct, unless S′ is exactly the correct subset. In this sense, for the (n, k)-

parity problem, the
(n
k
)
− 1 wrong answers are indistinguishable from each other. Thus, the struc-

ture of this problem forces this form of learner (but not necessarily all learning algorithms) to per-

form exhaustive search over subsets.

Property B.1 (a.k.a. the orthogonality of parities under the correlation inner product) implies

that any function f : {±1}n → R has a unique Fourier expansion (see, e.g. (O’Donnell, 2014)):

f(x) =
∑
S⊆[n]

f̂(S)χS(x), f̂S = E
x∼Unif({±1}n)

[
f(x)χS(x)

]
. (B.2)

In the statistical query (SQ) model (Kearns, 1998), Property (B.1) implies computational lower

bounds. In this model, a learner, rather than having access to examples drawn from the distribu-

tion, can query an oracle, which responds with noisy estimates of the query over the distribution.

Namely, each iteration the learner outputs a query qi : {±1}n → [−1, 1], and the oracle returns
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some value vi satisfying |vi − E(x,y)∼D [qi(x, y)] | ≤ τ, for some tolerance parameter τ > 0. It can be

shown that Equation B.1 implies that each query will have a non-trivial correlation only with a small

fraction (namely, 1/τ2) of the possible parities, which then implies that an SQ algorithm which

solves the (n, k)-parity problem using T queries of tolerance τmust satisfy T/τ2 ≥ Ω(nk). This

constitutes a lower bound on the number of queries (and/or on the tolerance), which indicates that

essentially, SQ algorithms cannot do much better than exhaustive search (going over all the possible

choices of size-k subsets).

It should be mentioned that the (n, k)-parity problem can be solved efficiently by a learning al-

gorithm that has access to examples (i.e., an algorithm that does not operate in the SQ framework).

Specifically, this problem can be solved by the Gaussian elimination algorithm. Moreover, it has

been shown that the (Stochastic) Gradient Descent algorithm, discussed in the next section, can also

be utilized for solving parities, given accurate enough estimates of the gradient and a very particular

choice of neural network architecture Abbe & Sandon (2020). That said, when the accuracy of the

gradients is not sufficient, GD suffers from the same SQ lower bound mentioned above (i.e., GD is

essentially an SQ algorithm Abbe et al. (2021)).

Learning sparse noisy parities, even at a very small noise level (i.e., o(1) or n−δ) is believed to be

computationally hard. This was first explicitly conjectured by Alekhnovich (2003), and has been the

basis for several cryptographic schemes (e.g., (Ishai et al., 2008; Applebaum et al., 2009, 2010)). For

noiseless sparse parities, Kol et al. (2017) show time-space hardness in the setting where k = ω(1).

We present some experiments with noisy parities in Appendix B.3.6, finding that our empirical

results (and theoretical analysis) are robust to Θ(1) noise.

B.1.2 Neural networks and standard training

Next, we establish notation for the standard neural network training pipeline. Our main results are

presented in the online learning setting, with a stream of i.i.d. batches of examples. At each iteration
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t = 1, . . . ,T, a learning algorithm receives a batch of B examples {(xt,i, yt,i)}Bi=1 drawn i.i.d. from

DS, then outputs a classifier ŷt : {±1}n → {±1}. If E(x,y)∼DS [1[̂yt(x) 6= y]] ≤ ε (i.e. ŷt agrees

with the correct parity on at least a (1 − ε) fraction of inputs), the learner is said to have solved the

parity problem with error ε in t iterations (tB samples); the smallest t for which this is true is the

convergence time tc. A learner may also output an initial classifier ŷ0 before observing any data.

This formulation permits improper function classes (i.e. other than parities over subsets S′) for

the parity learning problem. In particular, we will focus on hypothesis classes of continuous func-

tions f : {±1}n × Θ → R, which map to classifiers ŷ(x) = sign(f(x; θ))*. When Θ is a vector

space overR, a ubiquitous online learning algorithm is gradient descent (GD). For a choice of loss

function ℓ : {±1}×R→ R, initialization θ0, learning rate schedule {ηt}
T
t=1 ⊆ R and weight-decay

schedule {λt}Tt=1 ⊆ R, GD defines iterative updates

θt+1 ← (1− λt)θt − ηt∇θ

(
1
B

B∑
i=1

ℓ(yt,i, f(xt,i; θt))

)
, (B.3)

where f (the architecture) and ℓ are assumed to be such that this gradient (more generally, subgradi-

ent) is well-defined. In this context, online and stochastic gradient descent (OGD/SGD) are equiva-

lent names for the update rule (B.3).

A fundamental object of study in deep learning is the multi-layer perceptron (MLP). In this

setting, a 2-layer MLP with width h and activation function σ : R → R, parameterized by

W ∈ Rr×n, b ∈ Rr, u ∈ Rr, specifies the function

f(x;W, b, u) = u⊤σ(Wx+ b),

where σ(·) is applied entrywise. It is standard to use GD to jointly update the network’s parameters.

*When f(x; θ) = 0 in practice (e.g. with sign initialization), we break the tie arbitrarily. We ensure in the
theoretical analysis that this does not happen.
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Our results include positive results about “single neurons”: MLPs with width r = 1. We note that

for our theoretical analysis, when trainingMLPs with GD, we allow for different learning rate and

weight decay schedule for the different layers.

Finally, we will analyze randomized learning algorithms, such as GDwith random initialization

θ0, whose iterates θt (and thus classifiers ŷ) are random variables even when the samples are not. A

learning algorithm has permutation symmetry if, for all sequences of data {(xt,i, yt,i)}, the classi-

fiers ŷt ◦ π resulting from feeding {(π(xt,i), yt,i)} to the learner have identical distributions as π

ranges over all permutations of indices. The neural architectures and initializations (and thus, SGD)

considered in this work are permutation-symmetric; for this reason, it is convenient for notation to

choose S = [k] as the canonical (n, k)-parity learning problem, without loss of generality.

B.1.3 Additional related work

Feature learning using GD on neural networks. A line of recent work has focused on

understanding the feature learning ability of gradient descent dynamics on neural networks. These

analyses go beyond the Neural Tangent Kernel (NTK) regime, where they show a separation be-

tween learning with fixed features versus GD on neural networks, for these problems. Several of

these works assume structure (often ”sparse”) in the input data which is useful for the prediction

task, and helps avoid computational hardness. In contrast, our work focuses on studying hard prob-

lems at their computational limit. Here we discuss the most relevant works in detail:

A line of work (Diakonikolas et al. (2020); Yehudai & Ohad (2020); Frei et al. (2020)) focuses on

learning a single non-linearity y = σ(w⊤x) (typically σ(·) is the ReLU or sigmoid) using gradient-

based methods. These works obtain polynomial-time convergence guarantees when the distribution

satisfies a spread condition. These results do not extend to the Boolean hypercube.

Daniely &Malach (2020) also study the problem of learning sparse parities using neural net-

works. One key difference from our work is that they assume a modified version of the problem,
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where the input distribution is not uniform over the hypercube, but instead leaks information

about the label. In particular, the distribution ensures that the relevant parity bits always have the

same value. Shi et al. (2021) generalize this setting by considering a setting where labels are gener-

ated based on certain class specific patterns and the data itself is generated using these patterns with

some extra background patterns. This also embeds information in the data itself regarding the label,

unlike our setting, where the labels are uncorrelated with the input features. Under these structural

assumption, the papers study how GD on a two-layer network can learn useful features in polyno-

mial time. Both these analysis also exploits the first gradient step to find useful features. Shi et al.

(2021) additionally require a second step to refine the features.

Ba et al. (2022) show how the first gradient step is important for feature leaning. In particular,

they show that first update is essentially rank-1 and aligns with the linear component of the underly-

ing function. The functions we consider (parity) do not have a linear component.

Abbe et al. (2022b) define a notion of initial alignment between the network at initialization

and the target function and show that it is essential to get polynomial time learnability with noisy

gradients on a fully connected network. OurMLP results also exploit the correlation between the

gradient and the label to ensure that the gradient update gives us signal.

Frei et al. (2022a) also study learnability of a parity-like function with k = 2 under noisy labels.

The paper analyzes early stopping GD for learning the underlying labeling function. Our setup is

quite different from theirs and can handle k > 2.

In concurrent work, Damian et al. (2022) consider the problem of learning polynomials which

depend on few relevant directions using gradient descent on a two-layer network. They assume that

the distributional Hessian of the ground truth function spans exactly the subspace of the relevant

direction. Using this, they show that gradient descent can learn the relevant subspace with sample

complexity scaling as d2 and not dp where p is the degree of the underlying polynomial as long as the

number of relevant directions is much less than d. Their proof technique is similar to our two-layer
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MLP result which also exploits correlation in the first gradient step. However, for our setting, the

distributional Hessian has rank 0 and does not satisfy their assumptions.

Statistical mechanics of machine learning. An extensive body of work originating

in the statistical physics community has studied phase transitions in the learning curves of neural

networks (Gardner & Derrida, 1989; Watkin et al., 1993; Engel & Van den Broeck, 2001). These

works typically focus on student-teacher learning in the “thermodynamic limit’’, in which the num-

ber of training examples is α times larger than the input dimension and both are taken to infinity.

One of the classic toy architectures analyzed in this literature is the parity machine (Mitchison &

Durbin, 1989; Hansel et al., 1992; Opper, 1994; Kabashima, 1994; Simonetti & Caticha, 1996). In

our work, we introduce PolyNets, a variant of parity machines in which the output is real-valued

rather than±1; and we theoretically analyze disjoint-Polynets, which are the real-output analogue of

the oft-considered parity machines with tree architecture. While much of the statistical mechanics

of ML literature focuses on an idealized training limit in which the weights reach a Gibbs distribu-

tion equilibrium, there is a strand of the literature that aims to characterize the trajectory of SGD

training in the high-dimensional limit with constant-sized sets of ordinary differential equations

(Saad & Solla, 1995b,a; Goldt et al., 2019). These papers discuss cases, including problems that

share aspects with 2-sparse parities Refinetti et al. (2021), where the network gets stuck in (and then

escapes from) a plateau of suboptimal generalization error. Recently, Arous et al. (2021) studied

(for rank-one parameter estimation problems) the relative amount of time spent by SGD in an ini-

tial high-error “search” phase versus a final “descent” phase, which is reminiscent of the framing of

Theorem 5.7. However, to our knowledge prior work has not shown k-sparse parities can be learned

with a number of iterations that nearly matches known lower bounds, nor has it specifically studied

phase transitions in k-sparse parity learning during gradient descent.
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Learning parities with the NTK. Another relevant line of work studies learning the parity

problem using the neural tangent kernel (NTK) (Jacot et al., 2018). Namely, in some settings, when

the network’s weights stay close to their initialization throughout the training, SGD converges to a

solution that is given by a linear function over the initial features of the NTK. As shown in Theo-

rem 5.6, learning parities over a fixed set of features requires the size of the model to be Ω(nk). In

contrast, the model size (number of hidden neurons) considered in this paper does not depend at

all on the input dimension n. Nevertheless, the NTK analysis does give better sample complexity

guarantees than the ones presented in this work, with a somewhat more natural version of SGD.

For example, the work of Ji & Telgarsky (2019) demonstrates learning 2-sparse parities using NTK

analysis with a sample complexity ofO(n2), which matches the sample complexity lower bound

for learning this problem with NTK (see Wei et al. (2019a)). Concurrent work by Telgarsky (2022)

shows that this sample complexity can be improved toO(n) once the optimization leaves the NTK

regime. However, this analysis is given for networks of sizeO(nn), much larger than the networks

considered in this paper. We refer the reader to Table 1 in Telgarsky (2022) for a complete compari-

son of the sample-complexity, run-time and model-size bounds achieved by different works studying

2-sparse parities.

B.2 Proofs

B.2.1 Global convergence for SGD onMLPs

For some even number r, consider a ReLUMLP of size r:

f(x; θ) =
r∑

i=1
uiσ(w⊤

i x+ bi)
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Where σ is the ReLU activation σ(x) = max{x, 0}, w1, . . . ,wr ∈ Rr×n, b ∈ Rr, u ∈ Rr and

we denote the set of parameters by θ = {w1, . . . ,wr, b, u}. We denote by u(t)i ,w(t)
i , b(t) and θt the

value of the relevant parameters at iteration t of gradient-descent. For brevity, we sometimes denote

wi = w(0)
i , bi = b(0)i , ui = u(0)i . W.l.o.g., we assume that S = [k], and so y = χ[k](x) =

∏k
i=1 xi.

Indeed, since the weights’ initialization we consider is permutation symmetric, this does not limit

the generality of the results. We take ℓ to be the hinge loss: ℓ(y, ŷ) = max{1 − ŷy, 0}. We use the

following unbiased initialization:

• For all 1 ≤ i ≤ r/2, randomly initialize

w(0)
i ∼ Unif ({±1}n) , u(0)i ∼ Unif ({±1}) , b(0)i ∼ Unif({−1+ 1/k, . . . , 1− 1/k})

• For all r/2 < i ≤ r, initialize

w(0)
i = w(0)

i−r/2, b
(0)
i = b(0)i−r/2, u

(0)
i = −u(0)i−r/2

We start by computing the population gradient at initialization. Using the fact that ℓ′(0, y) =

−ywe get the following:

E
[
∇wi,jℓ(f(x; θ0), y)

]
= E

[
−y∇wi,jf(x; θ0)

]
(B.4)

= E
[
−yui1 {wi · x+ bi > 0} xj

]
.

For j ∈ [k]we have:

E
[
∇wi,jℓ(f(x; θ0), y)

]
= −ui E

 ∏
j′∈[k]\{j}

xj′

 1 {wi · x+ bi > 0}
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For j /∈ [k]we have:

E
[
∇wi,jℓ(f(x; θ0), y)

]
= −ui E

 ∏
j′∈[k]∪{j}

xj′

 1 {wi · x+ bi > 0}


Finally, we have:

E [∇biℓ(f(x; θ0), y)] = −ui E

∏
j′∈[k]

xj′

 1 {wi · x+ bi > 0}


Denote

gi,j = E
[
∇wi,jℓ(f(x; θ0), y)

]
, γi = E [∇biℓ(f(x; θ0), y)]

For some function f and some subset S ⊆ [n], denote f̂(S) = E[f(x)χS(x)].

Denote LTFw,b(x) = 1{w · x + b > 0} and let Maj(x) = sign
(∑n

i=1 xi
)
and observe that, if

|b| < 1,

LTFw,b(x) =
1
2
+

1
2
Maj(w� x)

where w � x = (w1x1, . . . ,wnxn) ∈ {±1}. Since {χS}S⊆[n] is a Fourier Basis, we can write Maj =∑
S⊆[n] M̂aj(S)χS and therefore:

LTFw,b(x) =
1
2
+

1
2
Maj(w� x) =

1
2
+

1
2
∑
S⊆[n]

M̂aj(S)χS(w� x)

=
1
2
+

1
2
∑
S⊆[n]

M̂aj(S)χS(w)χS(x)

So, for every S ⊆ [n]with |S| ≥ 1 we have L̂TFw,b(S) = 1
2M̂aj(S)χS(w) and so |L̂TFw,b(S)| =

1
2 |M̂aj(S)|.

Lemma B.1 (O’Donnell (2014), Section 5.3). Fix some k, and assume that n ≥ 2k2. Then, for every
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S ⊆ [n] s.t. |S| = k it holds that:

• If k is even: M̂aj(S) = 0.

• If k is odd:

c21k−2/3 ≤
(
n
k

)
M̂aj(S)2 ≤ c22k−2/3

for some universal constants c1, c2. More precisely,

M̂aj(S) = (−1)
k−1
2

( n−1
2

k−1
2

)
(n−1
k−1
) · 2−(n−1)

(
n− 1
n−1
2

)

Observe that for all S ⊆ [n] s.t. |S| = k it holds that M̂aj(S) = M̂aj([k]) and denote ξk :=

M̂aj([k]).

Therefore, by the previous lemma we get that for every even k the following holds:

ξ2k+1
ξ2k−1

≤
c22(k− 1)2/3

( n
k−1
)

c21 (k+ 1)2/3
( n
k+1
) ≤ c2

c1
(k+ 1)k

(n− k)(n− k+ 1)
≤ 8c2

c1
k2

n2
(B.5)

Also, observe that

Lemma B.2 (Fourier gap for majority). Fix some k and assume that n ≥ 4k. Then, Majority has a

γk-Fourier gap at S of size k with γk = 0.03(n− 1)−
k−1
2 .

Proof. First we establish a simple relationship between |ξk−1| and |ξk+1|.

|ξk−1| =

( n−1
2

k
2−1

)
(n−1
k−2
)2−(n−1)

(
n− 1
n−1
2

)

=
n− k
k− 1

·

( n−1
2
k
2

)
(n−1

k
) · 2−(n−1)

(
n− 1
n−1
2

)
=

n− k
k− 1

· |ξk+1|.
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Here, the first equation follows from Lemma B.1, and the second equation follows by simple algebra

using the following equality:
(m
r
)
= m−r+1

r
( m
r−1
)
.

Now, we can bound the difference,

|ξk−1| − |ξk+1| =
n− 2k+ 1

k− 1
· |ξk+1|

=
n− 2k+ 1

k− 1
·

( n−1
2
k
2

)
(n−1

k
) · 2−(n−1)

(
n− 1
n−1
2

)
≥ n− 2k+ 1

k− 1
·
(
n− 1
k

)−k/2
· e−k · 2

√
2π

e2
√
n− 1

≥ 0.03(n− 1)−
k−1
2 .

Here, the first equality holds from above, the second by Lemma B.1, the third inequality holds from

standard approximations of the binomial coefficients, and the last inequality follows from the fol-

lowing inequalities: n − 2k + 1 ≥ (n − 1)/2 (by assumption on n) and
√
2πkk/2

(k−1)ek+2 > 0.03 (by

standard calculus). This gives us the desired result.

Lemma B.3. Assume that k is even and that n ≥ 2(k+ 1)2. Then, the following hold:

1. If j ∈ {1, . . . , k} then:

gi,j = −
1
2
uiξk−1 · χ[k]\{j}(wi)

2. If j ∈ {k+ 1, . . . , n} then:

gi,j = −
1
2
uiξk+1 · χ[k]∪{j}(wi)

3. γi = 0.
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Proof. If j ∈ [k] then:

gi,j = −ui E
[
χ[k]\{j}(x)LTFwi,bi(x)

]
= −uiL̂TFwi,bi([k] \ {j})

= − 1
2
uiM̂aj([k] \ {j})χ[k]\{j}(wi) = −

1
2
uiξk−1 · χ[k]\{j}(wi)

Similarly, if j /∈ [k]we have:

gi,j = −ui E
[
χ[k]∪{j}(x)LTFwi,bi(x)

]
= −uiL̂TFwi,bi([k] ∪ {j})

= − 1
2
uiM̂aj([k] ∪ {j})χ[k]∪{j}(wi) = −

1
2
uiξk+1 · χ[k]∪{j}(wi)

Finally, we have:

γi = −uiL̂TFwi,bi([k]) = −uiM̂aj([k]) = 0

Lemma B.4. Let τ > 0 be some tolerance parameter, fix ε ∈ (0, 1) and let η = 1
k|ξk−1|

. Assume that k

is an even number. Fix some w1, . . . ,wk ∈ {±1}n, b1, . . . , br ∈ (−1, 1) and u1, . . . , uk ∈ {±1}. Let

ŵi = −η̂gi and b̂i = bi − ηγ̂i s.t. ‖ĝi − gi‖∞ ≤ τ and ‖γ̂i − γi‖ ≤ τ. Assume the following holds:

• For all i, j ∈ [k] it holds that wi,j = ui · sign ξk−1.

• bi = − 1
2 +

i+1
k

Then, if τ ≤ |ξk−1|
16k
√

2n log(2k/ε)
and n ≥ 211k4c22 log(2k/ε)

c21
there exists some û ∈ Rk with ‖û‖∞ ≤ 8k s.t.

f(x) =
∑k

i=1 ûiσ(ŵi · x+ b̂i) satisfies

E
x
[ℓ(f(x), χ[k](x))] ≤ 16εk2n

Additionally, for all i and all x it holds that |σ(ŵi · x+ b̂i)| ≤ n+ 1.
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Proof. We start with the following claim.

Claim 1: For all i and for all j ∈ [k] it holds that
∣∣ŵi,j − 1

2k
∣∣ ≤ τ

|ξk−1|
.

Proof : First, observe that by the assumption it holds that for all i, j ∈ [k],

ui · χ[k]\{j}(wi) = ui ·
k∏

j′∈[k]\{j}

wi,j = ui · (ui · sign ξk−1)k−1 = sign ξk−1

Now, from Lemma B.3 we have:

gi,j = −
1
2
uiξk−1 · χ[k]\{j}(wi) = −

1
2
|ξk−1|

and so

∣∣∣∣wi,j −
1
2k

∣∣∣∣ = ∣∣∣∣−η̂gi,j − 1
2k

∣∣∣∣ = 1
k

∣∣∣∣−kη̂gi,j + gi,j
|ξk−1|

∣∣∣∣ = 1
k|ξk−1|

∣∣gi,j − ĝi,j
∣∣ ≤ τ
|ξk−1|

Claim 2: For all i and for all j > k it holds that |ŵi,j| ≤
|ξk+1|+2τ
2k|ξk−1|

Proof : Using Lemma B.3 we have:

|ŵi,j| = η|̂gi,j| ≤ η(|gi,j|+ |gi,j − ĝi,j|) ≤ η
(
|ξk+1|
2

+ τ
)

=
|ξk+1|+ 2τ
2k|ξk−1|

Claim 3: For all i it holds that |̂bi − bi| ≤ τ
k|ξk−1|

Proof : Using Lemma B.3 we have:

|̂bi − bi| = η|̂gi,0| = η|gi,j − ĝi,j| ≤ ητ =
τ

k|ξk−1|

Claim 4: Fix δ > 0. Let hi be a function s.t. hi(x) = σ( 1
2k
∑k

j=1 xj + bi) and ĥi a function s.t.

ĥi(x) = σ(ŵi,j · x+ b̂i). Then, if τ ≤ δ
2

k|ξk−1|√
2n log(2k/ε)

and n ≥ 32c22 log(2k/ε)
c21 δ

2 , the following holds:
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1. Px∼{±1}n
[
|hi(x)− ĥi(x)| ≥ δ

]
≤ ε

k

2. |ĥi(x)| ≤ n+ 1

Proof : Let x ∼ {±1}n, and denote x̃j = ŵi,jxj. Denote Δ =
|ξk+1|+2τ
2k|ξk−1|

. So, for j > k, x̃j is a

random variable satisfying |x̃j| ≤ Δ. Furthermore, it holds that E
[∑

j>k x̃j
]
= 0. Therefore, from

Hoeffding’s inequality:

P

∣∣∣∣∣∣
∑
j>k

x̃j

∣∣∣∣∣∣ ≥ Δ
√

n log(2k/ε)
2

 ≤ 2 exp

−
2
(
Δ
√

n log(2k/ε)
2

)2

nΔ2

 ≤ ε
k

Now, fix some x s.t.
∣∣∣∑j>k x̃j

∣∣∣ ≤ Δ
√

n log(2k/ε)
2 . In this case we have:

|hi(x)− ĥi(x)| ≤

∣∣∣∣∣∣ 12k
k∑

j=1
xj + bi − ŵi · x+ b̂i

∣∣∣∣∣∣
≤

k∑
j=1

∣∣∣∣ 12kxj − ŵi,jxj
∣∣∣∣+
∣∣∣∣∣∣
∑
j>k

ŵi,jxj

∣∣∣∣∣∣+
∣∣∣bi − b̂i

∣∣∣
≤ kτ
|ξk−1|

+ Δ
√

n log(2k/ε)
2

+
τ

k|ξk−1|

=
τ(k2 + 1)
k|ξk−1|

+
|ξk+1|+ 2τ
2k|ξk−1|

·
√

n log(2k/ε)
2

=
τ
(√

2(k2 + 1) +
√
n log(2k/ε)

)
√
2k|ξk−1|

+
|ξk+1|

√
n log(2k/ε)

2
√
2k|ξk−1|

≤
τ
√
2n log(2k/ε)
k|ξk−1|

+
2
√
2c2
√
log(2k/ε)

c1
√
n

where in the last inequality we use Eq. (B.5). So, choosing τ ≤ δ
2

k|ξk−1|√
2n log(2k/ε)

and n ≥ 32c22 log(2k/ε)
c21 δ

2

gives the required.

Claim 5: Let h1, . . . , hk be the functions defined in the previous claim. Then, there exists weights
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u∗ with ‖u∗‖∞ ≤ 8k s.t. for f∗(x) =
∑k

i=1 u∗i hi(x) it holds that f∗(x) = 2χ[k](x) for all

x ∈ {±1}n.

Proof: For i ≤ k− 2 define u∗i = 8k(−1)i+1 and u∗k−1 = 6k, u∗k = −2k.

Proof of Lemma B.4: Choose û = u∗. Using Claim 4 and the union bound, w.p. 1 − ε over

x ∼ {±1}n it holds that for all i ∈ [k], |hi(x)− ĥi(x)| ≤ δ. Therefore, w.p. ≥ 1− ε

|f(x)− f∗(x)| =

∣∣∣∣∣
k∑

i=1
u∗i (hi(x)− ĥi(x))

∣∣∣∣∣ ≤
k∑

i=1
|u∗i |

∣∣∣hi(x)− ĥi(x)
∣∣∣ ≤ 8k2δ

so, choosing δ = 1
8k2 we get that, w.p. at least 1 − ε over the choice of x it holds that f(x)χ[k](x) ≥ 1.

Additionally, for every x it holds that

|f(x)| ≤
k∑

i=1
|u∗i |

∣∣∣ĥi(x)∣∣∣ ≤ 8k2(n+ 1) ≤ 16k2n

Therefore, we get:

E
x

[
ℓ(f(x), χ[k](x))

]
≤ εE

x

[
ℓ(f(x), χ[k](x))|f(x)χ[k](x) < 1

]
≤ εE

x

[
|f(x)||f(x)χ[k](x) < 1

]
≤ 16εk2n

Lemma B.5. Assume we randomly initialize anMLP using the unbiased initialization defined

previously. Consider the following update:

w(1)
i = (1− λ0)w

(1)
i − η0ĝi, b

(1)
i = b(1)i − η0γ̂i
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where

ĝi =
1
B

B∑
l=1

∇wiℓ(f(x0,l; θ0), y0,l), γ̂i =
1
B

B∑
l=1

∇biℓ(f(x0,l; θ0), y0,l)

Let k be even number. Then, for every ε, δ ∈ (0, 1/2), denoting τ = |ξk−1|
16k
√

2n log(2k/ε)
, if η = 1

k|ξk−1|
,

λ0 = 1, r ≥ k · 2k log(k/δ), B ≥ 2
τ2 log(4nr/δ) and n ≥

211k4c22 log(2k/ε)
c21

, w.p. at least 1 − 2δ

over the initialization and the sample, there exists û ∈ Rr with ‖û‖∞ ≤ 8k and ‖û‖2 ≤ 8k
√
k s.t.

f(x) =
∑r

i=1 ûiσ
(
w(1)
i · x+ b(1)i

)
satisfies

E
x
[ℓ(f(x), χ[n](x))] ≤ 16εk2n

Additionally, it holds that ‖σ(W(1) · x+ b(1))‖∞ ≤ n+ 1.

Proof. Note that by the choice of initialization it holds that f(x;W(0)) = 0, and by the assumption

on the loss function ℓ′(f(x;W(0)), y) = −y. Therefore, we get that E
[
∇wiℓ(f(x;W(0)), y)

]
= gi

and E
[
∇biℓ(f(x;W(0)), y)

]
= γi.

Claim: with probability at least 1− δ,

for all i, j :
∥∥∥ĝi − E

[
∇wiℓ(f(x;W(0)), y)

]∥∥∥
∞
≤ τ and

∣∣∣γ̂i − E
[
∇biℓ(f(x;W

(0)), y)
]∣∣∣ ≤ τ

(B.6)

Proof: Fix some i, j and note that by Hoeffding’s inequality,

Pr
[
|̂gi,j − E ĝi,j| ≥ τ

]
≤ 2 exp

(
−Bτ2/2

)
≤ δ

nr+ r

and similarly we get Pr
[
|̂γi − E γ̂i| ≥ τ

]
≤ δ

nr+r . The required follows from the union bound.

Now, assume that Eq. (B.6) holds. For some random wi ∼ {±1}n, the probability that wi,j =

wi,j′ for all j, j′ ∈ [k] is 2−k+1. Additionally, for some fixed i′ ∈ [k], the probability that bi = − 1
2+

i′
k

is 1
2k . Therefore, for some fixed i ∈ [r/2] and i′ ∈ [k], with probability 1

k·2k−1 , bi = bi+r/2 =
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− 1
2 +

i′
k and either wi,j = ui sign ξk−1 or wi+r/2,j = ui+r/2,j sign ξk−1. Taking r ≥ k · 2k log(k/δ),

we get that the probability that there is no i ∈ [r/2] that satisfies the above condition (for fixed i′) is:

(
1− 1

k2k−1

)r/2
≤ exp

(
− r
2k2k−1

)
≤ δ

k

Using the union bound, with probability at least 1 − δ, there exists a set of k neurons satisfying the

conditions of Lemma B.4, and therefore the required follows from the Lemma.

We use the following well-known result on convergence of SGD (see for example Shalev-Shwartz

& Ben-David (2014)):

Theorem B.6. LetM, ρ > 0. Fix T and let η = M
ρ
√
T
Let F be a convex function and u∗ ∈

argmin∥u∥2≤M f(u). Let u(0) = 0 and for every t, let vt be some random variable s.t. E
[
vt|u(t)

]
=

∇u(t)F(u(t)) and let u(t+1) = u(t) − ηv(t). Assume that ‖vt‖2 ≤ ρ w.p. 1. Then,

1
T

T∑
t=1

F(u(t)) ≤ F(u∗) +
Mρ√
T

We prove the following theorem:

Theorem 5.5 (SGD onMLPs learns sparse parities; full statement). Let k be an even number. As-

sume we randomly initialize anMLP using the unbiased initialization defined previously. Fix ε ∈

(0, 1/2) and let T ≥ 29k3rn2
ε2 , r ≥ k·2k log(8k/ε),B ≥ c−11 28k7/6n

( n
k−1
)
log(128k3n/ε) log(32nr/ε), n ≥

211k4c22 log(128k3n/ε)
c21

. Choose the following learning rate and weight decay schedule:

• At the first step, use η0 =
1

k|ξk−1|
, λ0 = 1 for all weights.

• After the first step, use ηt = 0 for the first layers weights and biases and ηt =
4k1.5

n
√

r(T−1)
for

the second layer weights, with λt = 0 for both layers.

• Bias terms are never regularized.
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Then, the following holds, with expectation over the randomness of the initialization and the

sampling of the batches:

E
[
min
t∈[T]

ℓ(f(x; θt), y)
]
≤ ε

Proof. Let F(u) = Ex
[
ℓ(u⊤σ(W(1)x+ b(1)), y)

]
and notice that F is a convex function. For every

t, denote

vt =
1
B

B∑
l=1

∇u(t)ℓ(f(xt,l; θt), y) =
1
B

B∑
l=1

∇u(t)ℓ

((
u(t)
)⊤

σ(W(1)xl,t + b(1)), yl,t
)

where we use the fact that we don’t update the weights of the first layer after the first step. From the

above we get E[vt|u(t)] = ∇u(t)F(u(t)).

Now, we will show that w.h.p. there exists u∗ with good loss. Let ε′ = ε
64k2n , δ

′ = ε
8 . Denote

τ = |ξk−1|
16k
√

2n log(128k3n/ε)
=

|ξk−1|
16k
√

2n log(2k/ε′)
. Observe that r ≥ k · 2k log(k/δ′), and using the fact that

|ξk−1| ≥ c1(k− 1)−1/3
( n
k−1
)−1 we get

B ≥ 28k2 · n log(128k3n/ε)
|ξk−1|

log(32nr/δ) =
2
τ2
log(4nr/δ′)

and additionally n ≥ 211k4c22 log(2k/ε′)
c21

.

From the above, applying Lemma B.5 with ε′, δ′ we get that w.p. 1−ε/4 there exists u∗ ∈ Rr with

‖u∗‖2 ≤ 8k
√
k s.t. F(u∗) ≤ ε/4 and for all i and all x it holds that ‖σ(W(1) · x+ b(1))‖∞ ≤ n+ 1.

Using this, we get:

‖vt‖2 ≤
1
B

B∑
l=1

‖σ(W(1)xl,t + b(1)), yl,t‖2 ≤
√
r(n+ 1)

So, we can apply Theorem B.6 withM = 8k
√
k and ρ = 2

√
rn and get that, w.p. 1 − ε/4 over the
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initialization and the first step, it holds that

E
steps 2...T

[
min

t∈{2,...,T}
ℓ(f(x; θt), y)

]
≤ E

[
1

T− 1

T∑
t=2

ℓ(f(x; θt), y)

]

= E

[
1

T− 1

T∑
t=2

F(u(t))

]
≤ ε/4+

16k1.5
√
rn√

T− 1
≤ ε/2.

Now, that after the first step we have u(1) = 0 and therefore ℓ(f(x; θ1), y) = 1, and so we always have

mint∈[T] ℓ(f(x; θt), y) ≤ 1. Therefore, taking expecation over all steps we get:

E
steps 1...T

[
min
t∈[T]

ℓ(f(x; θt), y)
]
≤ ε/2+ ε/2 = ε.

The simplified form B = Ω(nk log(n/ε)) in the main paper comes from the fact that
( n
k−1
)
≤

nk−1/(k− 1)!. This 1/(k− 1)! factor dominates the other poly(k) factors.

B.2.2 Recoverability of the parity indices from Fourier gaps

Given a network architecture where some neuron has a γ-Fourier gap with respect to the target sub-

set S, we quantify how the indices in S can be determined by observing an estimate of the popula-

tion gradient for a general activation function σ and wt:

Proposition B.7 (Fourier gap implies feature recoverability). For an activation function σ : R→ R,

let f(x;w) = σ(w⊤x) be the corresponding 1-neuron predictor. LetDS be an (n, k)-sparse parity

distribution. Let g(w) be an estimate* for the neuron’s population gradient of the correlation loss ℓ:

||g(w)− E
(x,y)∼DS

[∇wℓ(y, f(x;w))] ||∞ < γ/2.

*ForO(1)-bounded stochastic gradient estimators,O
(
log n
γ2

)
samples suffice to obtain such an estimate.
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Then, for every w such that σ′(w⊤x) has a γ-Fourier gap at S, the k indices at which g(w) has the largest

absolute values are exactly the indices in S.

Proof. Let h(x) := σ′(w⊤x). We compute the population gradient, we we call ḡ(w):

[̄g(w)]i = E
(x,y)∼DS

[∇wiℓ(y, f(x;w))] = − E
(x,y)∼DS

[
σ′(w⊤x)yxi

]

=


E
[
σ′(w⊤x)

∏
j∈S\{i} xi

]
i ∈ S

E
[
σ′(w⊤x)

∏
j∈S∪{i} xi

]
i /∈ S

=


ĥ(S \ {i}) i ∈ S

ĥ(S ∪ {i}) ≤ ĥ(S ∪ {i})− γ i /∈ S
,

where the inequality in the final i 6∈ S case is due to the Fourier gap property. Then, it holds that for

all i ∈ Swe have |gi| > γ/2 and for all i /∈ Swe have |gi| < γ/2. Thus, the largest entries of the

estimate g(w) occur at the indices in S, as claimed.

B.2.3 Global convergence for disjoint-PolyNets

In this section we will develop theory for disjoint-PolyNets trained with correlation loss, as illus-

trated in Figure B.1. Section B.2.3 will consider optimization with gradient flow, and section B.2.4

will consider optimization with SGD at any batch size B ≥ 1.

For any n ≥ 1 and 1 ≤ k ≤ n such that n′ := n/k is an integer, let P1, . . . , Pn′ denote (without

loss of generality) the partition Pi := {n′(i− 1) + 1, . . . , n′ · i}. Then, the (n, k)-disjoint-PolyNet is

the neural architecture, with trainable parameters are {wi ∈ Rn′}ki=1, which outputs

f(x;w1:k) :=
k∏

i=1
〈wi, xPi〉.
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Figure B.1: Example training curves for the disjoint‐PolyNet trained with correlation loss, which is the setting of Ap‐
pendix B.2.3. The left plot shows validation error under population gradient descent with small step size, approximating
the setting of Section B.2.3, and the right plot shows a run of SGD with batch size 1, as in Section B.2.4, though with a
constant learning rate schedule. Initialization is i.i.d. standard Gaussian.

Gradient flow analysis

For i, E [∇wiℓ(f(x;w1:k), y)] = 0, so the irrelevant weights remain fixed at initialization. For each

i ∈ [k], let v(t)i be the relevant weight in the kth partition.

In gradient flow, the relevant weights evolve according to the following differential equations:

∀i ∈ [n] : v̇i =
∏
j ̸=i

vj

Lemma B.8. Suppose disjoint-PolyNet for k > 2 is initialized such that
∏

i vi(0) > 0, and optimized

with gradient flow. Let v̄a := 1
k
∑k

i=1(vi(0))2, and v̄g :=
(∏k

i=1(vi(0))2
)1/k

. For any b ≥ 0 and

i ∈ [k], let Ti(b) := arg supt≥0(|vi(t)| ≤ b). Then

Ti(b) ≥
1

k− 2

(
v̄1−k/2
a − (v̄a + b2 − vi(0)2)1−k/2

)
.

Let Ti(∞) := arg supt≥0(|vi(t)| <∞). Then

Ti(∞)− Ti(b) ≤
1

k− 2
(v̄g + b2 − vi(0)2)1−k/2.
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Proof. First, observe that the product of the relevant weights is non-decreasing during gradient flow.

d
(∏k

i=1 vi(t)
)

dt
=

k∑
i=1

∂
(∏k

i=1 vi
)

∂vi
· v̇i =

k∑
i=1

∏
j̸=i

vi

2

> 0

Thus,
∏

i vi(0) > 0 implies that
∏

i vi(t) > 0 for all t.

Observe that
dv2i
dt

= 2viv̇i = 2
k∏

j=1
vj = 2

k∏
j=1
|vj|.

This implies that for all i, l ∈ [t],
dv2i
dt

=
dv2l
dt

. (B.7)

In other words, the squares of the relevant weights each follow the same trajectory, shifted according

to their initializations. Let q(t) := (vi(t))2 − (vi(0))2, for any i. This quantity evolves as follows:

q̇ = 2
k∏

i=1
|vi| = 2

( k∏
i=1

(q(t) + (vi(0))2)

)1/2

Since q(t) is strictly increasing, its inverse q−1 is well-defined, and we can use the inverse function

theorem to characterize q−1 for all t ≥ 0:

q−1(c) =
∫ c

0

1
2

( k∏
i=1

(γ + (vi(0))2)

)−1/2

dγ.

We can upper- and lower-bound the integrand by applyingMaclaurin’s inequality (see page 52 in

Hardy et al. (1952)): (
γ + v̄g

)k ≤ k∏
i=1

(γ + (vi(0))2) ≤ (γ + v̄a)k .
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The amount of time it takes for q to reach a value of c is thus:

∫ c

0

1
2

( k∏
i=1

(γ + (vi(0))2)

)−1/2

dγ ≥
∫ c

0

1
2
(γ + v̄a)−k/2dγ =

1
k− 2

(
v̄1−k/2
a − (c+ v̄a)1−k/2

)
.

Hence, for any b ≥ 0, for each i, |vi(t)| ≤ b as long as

t ≤ 1
k− 2

(
v̄1−k/2
a − (v̄a + b2 − vi(0)2)1−k/2

)
.

Meanwhile, the amount of time after q−1(c) it takes for q to explode to infinity is

∫ ∞

c

1
2

( k∏
i=1

(γ + (vi(0))2)

)−1/2

dγ ≤
∫ ∞

c

1
2
(γ + v̄g)−k/2dγ =

1
k− 2

(c+ v̄g)1−k/2.

Substituting c = b2 − vi(0)2, we obtain that the amount of time it takes for |vi| to grow from b to

∞ is
1

k− 2
(v̄g + b2 − vi(0)2)1−k/2.

We can upper- and lower-bound q̇ by applyingMaclaurin’s inequality (see page 52 in Hardy et al.

(1952)):

2
(
q(t) + v̄g

)k/2 ≤ q̇ ≤ 2 (q(t) + v̄a)k/2 .

When k = 2, solving the LHS and RHS differential inequalities yields:

v̄g(e2t − 1) ≤ q(t) ≤ v̄a(e2t − 1).

When k > 2, we obtain:

(v̄−(k/2−1)
g − (k− 2)t)−

1
k/2−1 − v̄g ≤ q(t) ≤ (v̄−(k/2−1)

a − (k− 2)t)−
1

k/2−1 − v̄a (B.8)

212



From the lower bound on q(t), we can infer that the relevant weights all explode to infinity by the

following time:

t =
1

(k− 2)
v̄−(k/2−1)
g =

1

(k− 2)
(∏

i vi(0)
)1−2/k

From the upper bound, we can infer that for any c > 0, it is the case that q(t) ≤ c so long as

t ≤ 1
k− 2

(
v̄−(k/2−1)
a − (v̄a + c)−(k/2−1)

)
.

Hence, for each i, |vi(t)| ≤ b for all

t ≤ 1
k− 2

(
v̄−(k/2−1)
a − (v̄a + b2 − (vi(0))2)−(k/2−1)

)
.

Nowwe analyze the relationship between the relevant weights and the accuracy of the disjoint-

PolyNet.

For y ∈ R, let

sign(y) =



1 if y > 0

0 if y = 0

−1 if y < 0

Then define the error of fwith parameters w1:k as

err(w1:k) := Pr
x∼{±1}n

[sign(f(x;w1:k)) 6= χS(x)]

Lemma B.9. Let w be any setting of the weights of a disjoint-PolyNet such that
∏

i vi > 0. For ease of
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notation, let ui := wi,2:n′ be the irrelevant portion of wi. There is a constant c such that

1
2
− 1
2

k∏
i=1

(
erf
(
|vi|

‖ui‖2
√
2

)
+

c‖ui‖∞
‖ui‖32

)
≤ err(w1:k) ≤ 2

k∑
i=1

exp
(
− |vi|

2

‖ui‖22

)

where erf is the Gauss error function erf(y) := 2√
π
∫ y
0 e

−τ2 dτ.

Proof. Let zi = x(i−1)n′+1 be the ith relevant coordinate of x, and let z−i = x(i−1)n′+2:in′ be the

irrelevant coordinates in Pi.

Then we have that the error of fwith parameters w1:k is

err(w1:k) = Pr
x

[
sign

( k∏
i=1

w⊤
i xPi

)
6= χS(x)

]

= Pr
x

[
sign

( k∏
i=1

w⊤
i xPi

)
= −χS(x)

]
+ Pr

x

[ k∏
i=1

w⊤
i xPi = 0

]

= Pr
x

[
sign

( k∏
i=1

w⊤
i xPi

)
= −χS(x)

]
+ Pr

x

[ k∏
i=1

w⊤
i xPi = 0

]

= Pr
x

[
#{i ∈ [k] : sign(vizi + u⊤i z

−
i ) = −zi} is odd

]
+ Pr

x

[ k∏
i=1

w⊤
i xPi = 0

]

= Pr
z−1 ,...,z−k

[
#{i ∈ [k] : u⊤i z

−
i > vi} is odd

]
/2

+ Pr
z−1 ,...,z−k

[
#{i ∈ [k] : u⊤i z

−
i < −vi} is odd

]
/2+ Pr

x

[ k∏
i=1

w⊤
i xPi = 0

]
(B.9)

= Pr
z−1 ,...,z−k

[
#{i ∈ [k] : u⊤i z

−
i > vi} is odd

]
+ Pr

x

[ k∏
i=1

w⊤
i xPi = 0

]
(B.10)

= Pr
z−1 ,...,z−k

[
#{i ∈ [k] : u⊤i z

−
i > |vi|} is odd

]
+ Pr

x

[ k∏
i=1

w⊤
i xPi = 0

]
(B.11)

Line B.9 follows because u⊤i z
−
i and zi are independent. In line B.10 we use that u⊤i z

−
i is symmet-

ric about 0. Finally, line B.11 uses the assumption that
∏k

i=1 vi > 0.
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We can bound Prx
[∏k

i=1 w⊤
i xPi = 0

]
using Hoeffding’s inequality:

0 ≤ Pr
x

[ k∏
i=1

w⊤
i xPi = 0

]
≤

k∑
i=1

Pr
zi
[u⊤i z

−
i = vi] ≤

k∑
i=1

Pr
zi
[u⊤i z

−
i ≥ |vi|] ≤

k∑
i=1

exp
(
− |vi|

2

‖ui‖22

)
.

The indicator random variables 1I[u⊤i z
−
i > |vi|] are independent of each other, so the first term in

line B.11 can be characterized using the distribution of the parity of a sum of independent Bernoulli

random variables. Let Xi ∼ Ber(pi) for i ∈ [k], and let X =
∑k

i=1 Xi. The generating function for

X is f(z) =
∏k

i=1((1− pi) + piz). The parity of X then satisfies

Pr[X is odd] =
f(1)
2
− f(−1)

2
=

1
2
− 1
2

k∏
i=1

(1− 2pi).

First we will prove the upper bound on err. First, observe that

1
2
− 1
2

k∏
i=1

(1− 2pi) ≤
k∑

i=1
pi.

Thus,

Pr
z−1 ,...,z−k

[
#{i ∈ [k] : u⊤i z

−
i > |vi|} is odd

]
≤

k∑
i=1

Pr
zi
[u⊤i z

−
i > |vi|]

≤
k∑

i=1
exp
(
− |vi|

2

‖ui‖22

)

by Hoeffding’s inequality, and we are done.
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Nowwe will prove the lower bound on err. We have

Pr
z−1 ,...,z−k

[
#{i ∈ [k] : u⊤i z

−
i > |vi|} is odd

]
=

1
2
− 1
2

k∏
i=1

(1− 2 Pr
zi
[u⊤i z

−
i > |vi|])

=
1
2
− 1
2

k∏
i=1

Pr
zi
[|u⊤i z−i | ≤ |vi|]. (B.12)

We can bound this expression using the Berry-Esseen theorem (Berry, 1941; Esseen, 1942). Let

β ∼ N(0, ‖ui‖22). Then, the Berry-Esseen theorem states that there is a constant c (which in practice

can be .56) such that for any i ∈ [k],

∣∣∣∣Przi [|u⊤i z−i | ≤ |vi|]− Pr[|β| ≤ |vi|]
∣∣∣∣ ≤ c‖ui‖∞

‖ui‖32

and we can use the characterization

Pr[|β| ≤ |vi|] = erf
(
|vi|

‖ui‖2
√
2

)
.

Plugging this into equation B.12, we obtain the lower bound on err.

First, we’ll apply Lemma B.8 and Lemma B.9 to the situation where the wi’s have±1 initializa-

tion. This generalizes Theorem 5.7.

Corollary B.10. Suppose all the weights in a disjoint-Polynet are initialized randomly in±1 and

k ≥ 3.

Let T(α) := arg supt≥0(err(w1:k(t)) ≥ α. Then, for γ ∈ (0, 1/2), if
∏

i vi(0) > 0 (which happens

w.p. 1/2),
T(1/2− γ)

T(0)
= 1− O((n′)1−k/2 · γ2/k−1).

Thus, even for γ arbitrarily close to 0, when the input is sufficiently long, the network spends almost all
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of training with error above 1/2− γ.

Proof. For±1 initialization,
‖ui‖∞
‖ui‖32

= (n′)−3/2

so by Lemma B.9,

err(w1:k(t)) ≥
1
2
− 1
2

k∏
i=1

(
erf
(
|vi(t)|√
2n′

)
+ c(n′)−3/2

)

≥ 1
2
− 1
2

k∏
i=1

(√
2
πn′
· |vi(t)|+ c(n′)−3/2

)

for some c > 0.

By Lemma B.8, |vi(t)| ≤ b for all iwhenever

t ≤ 1
k− 2

(
1− b2−k

)
.

Setting

b =
√

πn′/2
(
γ1/k − c(n′)−3/2

)
,

we obtain that T(1/2− γ) = 1
k−2(1− O((n′)1−k/2 · γ2/k−1)).

Also by Lemma B.8, using the language of that lemma statement, for all i

Ti(∞)− Ti(b) ≤
1

k− 2
· b2−k =

1
k− 2

· O((n′)1−k/2 · γ2/k−1).

Once all the relevant weights have exploded to infinity, the error of the network will have zero

error, so the result follows.

Now let us apply Lemma B.8 and Lemma B.9 to the situation where the wi’s have standard nor-

mal initialization. Again we find that with high probability, the phase of learning with near-trivial
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accuracy is much longer than the subsequent period until perfect accuracy, as illustrated by the left-

hand plot in Figure B.1. This culminates in the full theorem statement regarding phase transitions

in the loss:

Theorem 5.7 (Loss plateau for gradient flow on disjoint-PolyNets; full statement). Suppose all

the weights in a disjoint-PolyNet are initialized∼ N(0, 1), and k ≥ 3. Then, conditioned on∏
i vi(0) > 0, with probability 1 − 1/poly(n′) over the randomness of the initialization, for

γ ∈ (0, 1/2),
T(1/2− γ)

T(0)
= 1− Õ((n′)1−k/2 · γ2/k−1).

where T(·) is defined as in Corollary B.10.

Proof. By a standard application of the generic Chernoff bound (Wainwright, 2019), for each i ∈

[k], j ∈ [n′ − 1], we have

Pr[|ui,j| > τ] ≤ 2e−τ2/2 for all τ ≥ 0.

Applying the union bound, we obtain

Pr[∃i, j s.t. |ui,j| > τ] ≤ 2n′ke−τ2/2 for all τ ≥ 0.

This implies that w.p. ≥ 1− ε/2,

∀i : ‖ui‖∞ ≤
√
2 log(4n′k/ε). (B.13)

For each i, ‖ui‖22 follows a chi-squared distribution with n′− 1 degrees of freedom. By Laurent &

Massart (2000), for any τ ≥ 0,

‖ui‖22 ∈ [(n′ − 1)− 2
√

(n′ − 1)τ, (n′ − 1) + 2
√

(n′ − 1)τ+ 2τ] w.p. ≥ 1− 2e−τ.

218



Hence, w.p. ≥ 1− ε/2,

∀i : ‖ui‖2 =
√
n′ + O(

√
log(k/ε)) (B.14)

With probability 1− ε both ‖ui‖∞ and ‖ui‖2 are bounded as above, in which case we obtain that

for ε = 1/poly(n′, k), and for some c1, c2 > 0,

‖ui‖∞
‖ui‖32

≤
c1
√
log(n′k)(√

n′ + c2
√
log(n′k)

)3 ≤ Õ
(
(n′)−3/2

)
.

Plugging this into Lemma B.9 gives us

err(w1:k(t)) =
1
2
− 1
2

k∏
i=1

(
erf
(
|vi(t)|
‖ui‖2

√
2

)
+ O

(
‖ui‖∞
‖ui‖32

))

≥ 1
2
− 1
2

k∏
i=1

(
Õ
(
|vi(t)|√

n′

)
+ Õ

(
(n′)−3/2

))
.

Thus, we can choose b = Ω̃(γ1/k
√
n′) such that if vi(t) ≤ b for all i, then err(w1:k(t)) ≥ 1

2 − γ.

By Lemma B.8, for all i,

Ti(b) ≥
1

k− 2

(
v̄1−k/2
a − (v̄a + b2 − vi(0)2)1−k/2

)
≥ 1

k− 2

(
v̄1−k/2
a − (b2 − O(log(k)))1−k/2

)
.

By the Chernoff bound, maxi |vi(0)| ≤
√
2 log(4k/δ)w.p. ≥ 1− δ/2. And, by the same bound

we used for ‖ui‖22, we have that v̄a = 1 + O(
√
log(1/δ)/k)w.p. 1 − δ/2. Thus, for δ = 1/poly(k),

we have that with probability 1− δ,

Ti(b) ≥
1

k− 2

(
Ω̃(1)− (b2 − O(log(k)))1−k/2

)
=

1
k− 2

· Ω̃(1). (B.15)
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Also by Lemma B.8,

Ti(∞)− Ti(b) ≤
1

k− 2
(v̄g + b2 − vi(0)2)1−k/2 ≤ 1

k− 2
(b2 − vi(0)2)1−k/2.

With probability 1− 1/poly(k),

Ti(∞)− Ti(b) ≤
1

k− 2
(b2 − O(log(k)))1−k/2 =

1
k− 2

· Õ
(
(n′)1−k/2 · γ2/k−1

)
. (B.16)

Combining Equation B.15 and Equation B.16, we obtain the desired statement.

B.2.4 Global convergence and phase transition for gradient flow on disjoint-PolyNets

In this section we will analyze the training of a disjoint-PolyNet using SGDwith online (i.i.d.)

batches. We will show a convergence result for the 0-1 error of the learned classifier.

Theorem 5.8 (SGD on disjoint-PolyNets learns disjoint parities; full statement). Assume we ran-

domly initialize the disjoint-PolyNet with weights drawn uniformly from {±1}. Fix ε ∈ (0, 1/2)

and run SGD at any batch size B ≥ 1 for T ≥ 6 log(2nT/δ) log(2k/ε)(3n′ − 2)2k−1 iterations.

There exists an adaptive learning rate schedule, such that, with probability 1/2 over the randomness

of the initialization and 1− δ over the sampling of SGD, the following holds:

err
(
w(T+1)
1:k

)
≤ ε.

Proof. For simplicity of presentation, we will assume B = 1. Let the sample at iteration t be

(x(t), y(t))where x(t) ∼ Unif({±1}n) and y(t) = χ(t)S (x(t)). Denote the population and stochastic
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gradient at time t as:

ĝ(t)i = −y(t)
∏

j̸=i

w(t)
j

⊤
x(t)j

 x(t)i

g(t)i = −

∏
j̸=i

w(t)
j,1

 e1

Observe that |̂g(t)i,j |, |g
(t)
i,j | ≤

∏
l̸=i ‖w

(t)
l ‖1; note that this is also true when B > 1. Let the learning

rate be η(t)i = 1
2
√

2T log(2nT/δ)·
∏

l̸=i ∥w
(t)
l ∥1

. Let Δ(t)
i,j = η(t)i (g(t)i,j − ĝ(t)i,j ) and s

(t)
i,j =

∑t
τ=1 Δ

(τ)
i,j . Observe

that EΔ(t)
i,j = 0 and therefore s(1)i,j , . . . , s

(t)
i,j form a martingale. Furthermore, observe that

|s(t)i,j − s(t−1)i,j | = |Δ
(t)
i,j | ≤

|g(t)i,j |+ |̂g
(t)
i,j |√

T log(2nT/δ) ·
∏

l̸=i ‖w
(t)
l ‖1

≤ 1√
2T log(2nT/δ)

Then, for every t < T and i, j, by the Azuma-Hoeffding inequality, with probability 1− δ
nT , |s

(t)
i,j | ≤

1/2. By the union bound, w.p. at least 1− δ, for every t < T and all i, j it holds that |s(t)i,j | ≤ 1/2. Let

us assume this holds.

Claim B.11. For all t ≤ T+ 1, for j > 1, |w(t)
i,j | ≤ 3/2.

Proof. Note that w(t+1)
i,j = w(1)

i,j + s(t)i,j , therefore, we have,

|w(t+1)
i,j | ≤ |w

(1)
i,j |+ |s

(t)
i,j | ≤ 3/2.

since |w(1)
i,j | = 1 and |s(t−1)i,1 | ≤ 1/2.

Denote ξi = sign
(
w(1)
i,1

)
and assume that

∏k
j=1 ξj > 0, and note that this happens w.p. 1/2. We

will assume this holds for the next lemma.
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Claim B.12. For all t ≤ T+ 1 and i ∈ [k] it holds that

ξiw
(t)
i,1 = |w

(t)
i,1 | ≥

1
2
+

1
4
√
2

(
1

3n′ − 2

)k−1
√

t− 1
log(nT/δ)

.

Proof. Observe that the claim holds for t = 1 since |w(1)
i,‘ | = 1. By induction on t, assume the claim

holds for all τ ≤ t. Now we will prove it holds for t+ 1.

Observe that for all τ ≤ t, by the assumption:

g(τ)i,1 = −
∏
j ̸=i

w(τ)
j,1 = −ξi

∏
j̸=i

ξjw
(τ)
j,1 = −ξi

∏
j̸=i

|w(τ)
j,1 |.

Note that w(t+1)
i,1 = w(1)

i,1 +
∑t

τ=1 η
(τ)
i

(∏
j ̸=i w

(τ)
j,1

)
+ s(t)i,1 , then we have

ξiw
(t+1)
i,1 = ξiw

(1)
i,1 + ξi

t∑
τ=1

η(τ)i

∏
j̸=i

w(τ)
j,1

+ ξis
(t)
i,1

= 1+
t∑

τ=1

 1
4
√
2τ log(nT/δ)

·
∏
j̸=i

ξjw
(τ)
j,1

‖w(τ)
j ‖1

+ ξis
(t)
i,1 (B.17)

≥ 1
2
+

1
2
√
2T log(2nT/δ)

·
t∑

τ=1

∏
j̸=i

|w(τ)
j,1 |

‖w(τ)
j ‖1

− |s(t)i,1 | (B.18)

≥ 1
2
+

1
2
√
2T log(2nT/δ)

·
t∑

τ=1

∏
j̸=i

|w(τ)
j,1 |

|w(τ)
j,1 |+

3(n′−1)
2

 (B.19)

≥ 1
2
+

1
2
√
2T log(2nT/δ)

·
t∑

τ=1

∏
j̸=i

1
1+ 3(n′ − 1)

 (B.20)

≥ 1
2

(
1+

(
1

3n′ − 2

)k−1 t√
2T log(2nT/δ)

)
.

(B.17) follows from observing that ξiw
(1)
i,1 = |w(1)

i,1 | = 1 and
∏k

j=1 ξj = 1. (B.18) follows from the
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inductive hypothesis ξjw
(τ)
j,1 = |ξjw

(τ)
j,1 |. (B.19) follows from our assumption that |s(t)i,1 | ≤ 1/2 and

Claim B.11.(B.20) follows from the inductive hypothesis |w(τ)
i,1 | ≥ 1/2.

Setting T such that T ≥ 2 log(2nT/δ)α2(3n′ − 2)2k−2 for α = 3
√
(n′ − 1) log(2k/ε)− 1, from

the above claims, after iteration T, we have

w(T+1)
i,1 ≥ α + 1

2

w(T+1)
i,j ≤ 3/2 for j > 1.

Using Lemma B.9, we have with probability 1− δ,

err(w(T+1)
1:k ) ≤ 2k exp

(
− (α + 1)2

9(n′ − 1)

)
= ε.

B.3 Additional figures, experiments, and discussion

This section contains our unabridged empirical results, visualizations, and accompanying discus-

sion. Additional example training curves (like the assortment in Figure 5.1 (left)) are shown in Fig-

ure B.2; more examples can be found in the subsections below.

Convergence times, success probabilities, and scaling laws. We first present the full

empirical results outlined in Section 5.3 of the main paper. Figure B.3 shows convergence times tc

on small parity instances for all of the architecture configurations enumerated in Section 5.3.1. In

some of these settings, tc exhibits high variance due to unlucky initializations (see Figure B.4); thus,

we report 10th percentile convergence times. Figure B.5 gives coarse-grained estimates for how tc

scales with (n, k), based on small examples. For selected architectures, Figure B.6 shows how these
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Figure B.2: Additional training curves (on the (50, 3)‐parity problem, except the first row); full details are in Ap‐
pendix B.4.1. 1st row: The same architecture, initialization, and training algorithm (a width‐100 ReLU MLP in this case),
without an explicit sparse prior, adapts to the computational difficulty parameters n, k. 2nd row: Our positive empirical
results hold over a wide range of batch sizes B, all the way down to B = 1. Training is unstable (more outliers) at very
large and very small batch sizes. 3rd row: Even the least overparameterized neural networks, which are barely wide
enough to represent parity, converge with reasonable probability (sometimes failing to reach a global minimum). 4th row:
Larger models (width‐1000MLPs and demb = 1024 Transformers) are robust to a wide range of batch sizes. Note the
lack of plateaus in setting (vi), which is revisited in Appendix B.3.8.
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Figure B.3: 10th percentile convergence times tc of SGD (with n = 30, hinge loss, uniform initialization, and best learn‐
ing rate η ∈ {1, 10−1, 10−2, 10−3}), for various architectures, parity degrees k, and batch sizes B. See Appendix B.4
for full details.

convergence times scale with n and kmore precisely: for small n, power law relationships tc ∝ nα·k

(for small constants α) are observed for all configurations. Note that for larger n, the exponent (i.e.

the slope in the log-log plot) increases: with a constant learning rate and standard training, the nΘ(k)

does not continue indefinitely. All additional details are in Appendix B.4.

Guide to this section. The remainder of Appendix B.3 expands on the various discussions

and figures from Sections 5.4 and 5.5.

• Appendix B.3.1 gives experimental evidence that Fourier gaps are present at iterates wt and initial-

izations w0 other than sign vectors, as well as for activation functions other than ReLU. This sug-

gests that the feature amplification mechanism is robust, and illuminates directions for strength-

ening the theoretical results.
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Figure B.4: Percentage of converged runs (tc < 105) out of 25 random trials, with the same architectures and training
parameters as Figure B.3. With sufficiently large batch sizes, training is extremely robust in settings (i) through (xv).

• Appendix B.3.2 discusses how the building blocks of deep learning (activation functions, biases,

initializations, learning rates, and batch sizes) play multiple, sometimes conflicting roles in this

setting.

• Appendix B.3.3 provides additional white-box visualizations of hidden progress from Figure 5.3.

• Appendix B.3.4 explores the implications of the feature amplification mechanism for scaling

model size– namely, unlike random search, large width does not impart parallel speedups.

• Appendix B.3.5 shows that our results hold in the finite-sample setting (allowing for multiple

passes over a training set of sizem). In particular, we show that in low-data regimes, the models

exhibit the grokking phenomenon.

• Appendix B.3.6 extends our results to noisy parities (which comprise the true “emblematic computationally-

hard problem”).
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• Appendix B.3.7 introduces a counterexample for “layer-by-layer learning”, using parity distribu-

tions whose degrees are higher than those of the individual layers’ polynomial activations. Prelim-

inary experiments show that standard training works in this setting.

• Appendix B.3.8 presents examples of training curves for wide polynomial-activationMLPs,

where, unlike the other settings, there is no initial plateau in the model’s error.

B.3.1 Fourier gaps at initialization and SGD iterates

Proposition B.7 shows that if the function x 7→ σ′(w⊤
0 x) has a Fourier gap at S, then S can be iden-

tified from a batch gradient at initialization w0 with B = O(1/γ2) samples. Our end-to-end result

(Theorem 5.5) requires ReLU activations and sign vector initialization, because the Fourier gap con-

dition (Definition 5.4) arises from exact formulas for the Fourier coefficients of the majority func-

tion. Stronger end-to-end theoretical guarantees would follow from analogous Fourier gaps in more

general population gradients. This requires x 7→ σ′(w⊤x) to satisfy these conditions simultaneously:

• Fourier concentration: upper bounds on the degree-(k + 1) coefficients f̂(S ∪ {i}), for i 6∈ S.

The term is borrowed from Klivans et al. (2004), who use upper bounds on Fourier coefficients of

LTFs to approximate them (thus, learn halfspaces) with low-degree polynomials.

• Fourier anti-concentration: lower bounds on the degree-(k− 1) coefficients f̂(S \ {i}), for i ∈ S.

A natural question is: which Boolean functions, other than majority, satisfy the γ-Fourier gap prop-

erty at S, for γ ≥ n−Ω(k)?

We present some numerical evidence for large Fourier gaps in functions x 7→ σ′(w⊤x) other than

majority, which arise from gradients of architectures other than ReLUMLPs with sign initializa-

tion. This shows that the mechanism of feature emergence is empirically robust in settings not fully

explained by our current theory. Establishing corresponding theoretical guarantees would enable

stronger end-to-end global convergence guarantees for MLPs and other architectures.
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Figure B.7: Distributions of exact Fourier gaps Γσ,k(w) when σ = ReLU, and w is an i.i.d. {uniform, Gaussian} random
vector. These are derived from the Fourier coefficients of the corresponding random LTFs, computed here in exponen‐
tial time for n = 15.

In these experiments, population gradients were computed by brute force integration over all 2n

Boolean inputs x ∈ {±1}n. In all cases, for various choices of σ,w, we measure a slightly relaxed

notion of Fourier gap Γ in the population gradient:

Γσ,k(w) := max
i∈[k]
|gi| −max

i ̸∈[k]
|gi|, g := E[yx σ′(w⊤x)].

If Γ > 0, then one* coordinate from the parity can be identified fromO
(
log n
Γ2

)
samples of the

gradient at w.

Random LTFs. For ReLU activations and symmetric Bernoulli (i.e. random sign) initializa-

tion wi ∼ Unif({±c}n), the Fourier coefficients are the same as those of majority; thus, there is a

Fourier gap of γ ≥ n−Ω(k) at every set S (and the same is true of Γ). We probe the Fourier gaps of

linear threshold functions (LTFs) under other ubiquitous initializations: i.i.d. uniform and Gaus-

sian. These are shown in Figure B.7, which indicates (at least for small n, k) that the Fourier gap is

comparable to that of majority with non-negligible probability.

*Replacing the first max in the definition of Γ with min would give us the same notion of Fourier gap as
Definition 5.4: if all the relevant coordinates are larger than all of the irrelevant ones, estimating the popula-
tion gradient allows us to recover the relevant coordinates.
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Figure B.8: Numerical evidence for Fourier gaps beyond random LTFs. Left: Fourier gaps of exact population gradients
EDS [yxi sin(w⊤x/

√
n)] induced by sinusoidal activations, for random initializations w. In these small cases, they are

comparable the the Fourier gaps of majority (red dashed line). Right: Fourier gaps of a sinusoidal neuron’s population
gradients along the SGD optimization path (10 trials shown). The Fourier gap is consistently positive at initialization, but
somewhat smaller than that of majority (red dashed line). Interestingly, it amplifies through the course of training.

Random non-LTFs. The successful convergence of architectures with smoother activations (in

the parity setting and beyond) motivates the question of whether large Fourier gaps are present in

population gradients corresponding to functions other than LTFs. Figure B.8 (left) shows that this

is the case for sinusoidal activations.

Boolean functions along the SGD path. Finally, to further close the gap between Theo-

rem 5.5 and the empirical results, it is necessary to address the fact that SGD accumulates gradients

with respect to time-varying iterates, while our analysis approximates this using a large-batch gra-

dient at a static iterate w0. In fact, SGD seems to help in some cases: Figure B.8 (right) shows that

when training a sinusoidal neuron, SGD amplifies the initial Fourier gap.
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B.3.2 Counterintuitive roles of the building blocks of deep learning

Even in this simple problem setting, the simultaneous computational and statistical considerations

lead to counterintuitive consequences for the optimal configurations of architectures and algo-

rithms for this setting. We encountered the following, in the search for architecture configurations

for the empirical study:

• Activation functions. This mechanism of features emerging via Fourier gaps (see Definition 5.4)

is strongest with non-smooth activations such as the ReLU, whose derivatives are discontinuous

threshold functions. This is an orthogonal consideration to representational capacity and miti-

gation of local minima (under which one might conclude that degree-k polynomial activations

are optimal). In summary, in feature learning settings where the Fourier gaps and low-complexity

solutions are simultaneous relevant, there is a sharpness-smoothness tradeoff for the activation

function.

• Biases. The symmetry of the majority function (as well as all unbiased LTFs) causes its even-degree

Fourier coefficients to be zero; thus, certain variants of the setups in Section 5.3 fail for odd k.

Bias terms (trainable or fixed) are necessary to break this symmetry, in theory and practice. Simul-

taneously, biases serve the more conventional role of shifting the loss surface; see Section B.4.1 for

how this affects the details of how the biases were chosen in the experiments.

• Initializations. The role of the initialization distribution is similarly twofold in this setting: w0

should be close to the desired solution w∗, but it must also be selected such that SGDwill suc-

cessfully amplify the Fourier gap. A third consideration, which we do not attempt to study in

this work, is that multiple randomly-initialized neurons will tend to learn the correct features at

different times (see the weight trajectory visualizations in Figure 5.3 and Figure B.9, as well the

staircase-like training curves seen for MLPs in Figure 5.1 (left)). We expect this symmetry breaking
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phenomenon to be present in more complex feature learning settings. Finally, as shown in the

training curves from setting (vi) in Figure B.2, and in more detail in Appendix B.3.8, the choice of

activation function influences the qualitative behavior of the training curves: namely, whether the

plateaus disappear at large widths and batch sizes.

• Batch sizes and learning rates. The empirical and theoretical results both suggest that SGD uses

independent samples to gradually amplify a signal containing the correct features in the initial

population gradient of the correlation
(
∇w E[−yxiσ′(w⊤x)]

)
|w=w0 . However, it would be truer

to this mechanism to stay at the initialization w0 until the algorithm has accumulated enough

data to discern the correct indices (equivalently, scale up the batch size); in contrast, standard

training takes gradients with respect to wt along the SGD path. We hypothesize that the bias in-

curred by this drifting wt (and thus drifting population gradient) accounts for the degradations

seen in Figure 5.2 (right) and Figure B.6. However, Figure B.8 (right) shows that the movement

of SGD can be helpful, amplifying the Fourier gap.

B.3.3 Hidden progress measures

In this section, we provide an expanded discussion and plots for the investigations outlined in Fig-

ure 5.3 and the “hidden progress measures” section in Section 5.5.

For a neural network training pipeline which outputs a sequence of iterates θ0, . . . , θT ∈ Θ, we

define a progress measure ρ : Θ → R to be any function of the training algorithm’s state* which is

predictive of the time to convergence (i.e. conditioned on θt, the random variables ρ and tc − t are

not independent). By this definition, the only algorithms which have no progress measures are those

whose convergence times tc arememoryless (independent of θt).

*In addition to the model’s parameters, the full state of the training procedure should also include the
auxiliary variables defined by the optimization algorithm; two ubiquitous ones in deep learning are the mo-
mentum vector and the adaptive preconditioner. Here, we only consider vanilla SGD, which maintains no
auxiliary variables.
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Note that many trivial progress measures exist: an example to keep in mind is that for the al-

gorithm which exhaustively enumerates over a deterministic list of hypotheses (say, the possible

k-element subsets S in lexicographical order) and terminates when it finds the correct one, the cur-

rent iteration t is a progress measure. Thus, the purpose of demonstrating hidden progress measures

ρ is not to provide further evidence that SGD finds the features using Fourier gaps. Rather, it is to

(1) further refute the hypothesis of SGD performing a memoryless Langevin-like random search,

and (2) provide a preliminary exploration of how progress can be quantified even when the natural

metrics of loss and accuracy appear to be flat.

Fourier gaps over time. The Fourier gap visualizations in Section B.3.1 already provides an

example of a quantity which varies continuously as the model trains, despite no apparent progress

in the loss and accuracy curves. However, none of our theoretical analyses capture the empirical

observation that this quantity tends to amplify over time. Below, we consider other quantities which

reveal hidden progress in parity learning, which are more straightforward and closer to our analyses.

Weight movement. The most direct observation of hidden progress simply comes from the

movement of the neurons’ weights at the relevant indices: that is, for a single neuron’s weights wt ∈

Rn, the quantity ρ([wt]i) : i ∈ S. In the main paper, Figure 5.3 (left, center) directly visualizes

the evolution of the weights wt for a single sinusoidal neuron (with a bias, but no second layer).

Figure B.9 supplements these plots from the main paper with additional plots of weight trajectories,

at different batch sizes B, as well as a width-10MLP architecture. As seen in these plots, progress

only becomes visible in the loss once the relevant weights become larger than all of the irrelevant

weights.

ℓ∞ path length. Finally, we present an example of a singlemeasurement of the optimization

path which captures hidden progress in this setting, which can be plotted alongside loss and accu-
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Figure B.9: Supplementary plots for visualizations of the optimization trajectory wt, and the hidden progress measure
ρ(w0:t). In the MLP plots, the single scalar ρ is the∞‐norm of the entire first layerW, and weights are color‐coded by
row (i.e. neuron). With small batch sizes B ∈ {1, 4}, per‐iteration losses are averaged over a short window (lengths 16
and 4, respectively).
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racy curves. For any iterates of a neuron’s weights wt ∈ Rn, we choose the∞-norm of the move-

ment from initialization: ρ(w0:t) := ||wt − w0||∞. We present a brief intuitive sketch of the motiva-

tion for this choice of ρ(·), and some additional visualizations.

From the theoretical analysis, under the approximation∇ℓ(wt) ≈ ∇ℓ(w0) (so that feature learn-

ing is performed by estimating the initial population gradient to high precision), we can think of the

i-th coordinate of wt as a biased random walk with constant variance σ2; the Fourier gap condition

entails that biases βi of these random walks are large when i ∈ S. Then, this choice of ρ is an esti-

mate for the drift term t · maxi |βi|, which is larger than the σ
√
t contribution of the variance for

sufficiently large t.

This progress measure is shown alongside the loss curves in Figure B.9, in red. We do not attempt

to characterize the dynamics of ρ; we only note that they are clearly distinguishable from the max-

imum of n unbiased random walks, even when SGD appears to make no progress in terms of loss

and accuracy. Studying hidden progress measures in deep learning more quantitatively, as well as in

more general settings, presents a fruitful direction for future work.

B.3.4 Convergence time vs. width

We provide supplementary plots for the experiment outlined in Figure 5.4 (left), which probes

whether extremely large widths (r � nk) afford factor-r parallel speedups of the parity learning

mechanism (as one would expect from random search). On 3 parity instances n ∈ {30, 40, 50}, k =

3, we varied the width r ∈ {1, 2, 3, . . . , 9, 10, 30, 100, 300, . . . , 106, 3× 106}, keeping all other pa-

rameters the same (B = 128, η = 0.1).

Results. We did not find evidence of such parallel speedups over 1000 runs in each setting; see

Figure B.10. This serves as further evidence that the mechanism by which standard training solves

parity is best understood as deterministic and sequential, rather than behaving like random search
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Figure B.10: Number of iterations for MLPs (with standard initialization and training) to converge on sparse parity
problems, in terms of width r. Boxes denote interquartile ranges over 1000 runs; whiskers denote±1.5 · IQR;×
markers denote minimum and maximum outliers. Underparameterized models (r < k) are shown in red, and considered
“converged” at 55% accuracy. Scaling r this way does not lead to r× parallel speedups, like the expected success time
for r copies of random search (shown in green for comparison).

over size-k subsets. A benefit of width appears to be variance reduction: the upper tail of long con-

vergence times is mitigated by a large number of randomly-initialized neurons.

B.3.5 Learning and grokking in the finite-sample case

We provide some supplementary plots for the experiments outlined in Figure 5.4 (right). In these

settings, a fixed architecture (width-100MLP with ReLU activations) is trained with minibatch

SGD in an otherwise fixed configuration (hinge loss, learning rate η = 0.1, batches of size B = 32)

on a finite training sample of sizem. We also vary a weight decay parameter λ.

As shown in Figure B.11, the weight decay parameter λmodulates a delicate computational-

statistical tradeoff: it improves generalization (expanding the range ofm for which training even-

tually finds the correct solution), but the model fails to train at large values of λ. For smallm and

appropriately tuned λ, we observe grokking: the model initially overfits the training data, but finds a

classifier that generalizes after a large number of iterations.
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Figure B.11: Supplementary plots for the finite‐sample setting. The same configuration (width‐100 ReLU MLP,
B = 32, η = 0.1) varying the sample sizem (decreasing from left to right) and weight decay λ (increasing from top
to bottom). Whenm is sufficiently large (much larger than the statistical thresholdΘ(k log n)), generalization error is
negligible. Whenm is too small, the model fails to train. In between, we observe eventual convergence to the correct
solution, with training curves exhibiting the grokking phenomenon. Weight decay governs a statistical‐computational
tradeoff in this setting: larger λ improves generalization, but can cause optimization to fail (bottom row).
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B.3.6 Learning noisy parities

The other empirical results in this work focus on noiseless parity distributionsDS, to reduce the

number of sources of variance and degrees of freedom. However, the setting of random classifica-

tion noise is important for several reasons. In this section, we briefly demonstrate that our results

extend to this case. LetD(ε)
S denote the (n, k, ε)-noisy parity distribution, defined by flipping the

labels in the (n, k)-parity distributionDS independently with probability 1
2 − ε. Note that when

ε = 0, the labels are completely random (thus, S cannot be learned). By a standard PAC-learning

argument, when 0 < ε ≤ 1
2 , the statistical limit for identifying S from i.i.d. samples fromDS scales

as Θ
(
k log n
ε2

)
.

Motivations. First, learning parities from noisy samples is the true “emblematic computationally-

hard distribution”. Without noise, there is a non-SQ algorithm which avoids the exponential-in-k

computational barrier: Gaussian elimination can identify S inO(n3) time and Θ(n) samples. Sec-

ond, viewing parities as an idealized setting in which to understand training dynamics, resource

scaling, and emergence in deep learning, it is important to see that this phenomenon is robust to

label noise.

Theory. It is easy to incorporate label noise into the theoretical analysis, which works with corre-

lations of the formEDS [y f(x)]; each coordinate of the population gradient of the correlation loss is

a quantity of this form. In the noisy case, these quantities are replaced with

E
(x,y)∼D(ε)

S

[y f(x)] = ε · E
(x,y)∼DS

[y f(x)].

In particular, when architecture’s population gradient has a Fourier gap with parameter γ in the

noiseless case implies a Fourier gap with parameter ε · γ.
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Figure B.12: Training curves (over 5 random seeds) for a width‐100 ReLU MLP on noisy (50, 3, ε)‐parity learning
problems at various batch sizes B and noise levels (flipping labels with probability p, so that ε = 1 − 2p). The models
learn the features and converge successfully (measured by accuracy on the noiseless distribution), even with 49% of
labels flipped randomly (i.e. ε = 0.01). This is a preliminary illustration that the phenomena investigated in this paper
are robust with respect to i.i.d. label noise. Note that the scale of t is much larger for small batches and high noise.
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Experiments. We find that the experimental findings are robust to label noise, in the sense that

models are able to obtain nontrivial (and sometimes 100%) accuracy; see Figure B.12 for some train-

ing curves under various settings of ε. This provides concrete evidence against the (already extremely

dubious) hypothesis that neural networks, with standard initialization and training, learn noiseless

parities by implicitly simulating an efficient algorithm such as Gaussian elimination. Note that with

a constant learning rate (here, η = 0.1) and label noise, the iterates of SGD do not always converge

to 100% accurate solutions.

B.3.7 Counterexample for layer-by-layer learning

Notation. Consider an L-layer MLP with activation σ, parameterized by weights and biases

θ = (W1, b1, . . . ,WL−1, bL−1, u),

and defined by

fmlp(x; θ) := (fL ◦ fL−1 ◦ · · · ◦ f2 ◦ f1)(x),

where fi denotes the function z 7→ σ(Wiz + bi) for 1 ≤ i ≤ L − 1, and fL denotes z 7→ u⊤z. The

shapes of the parametersWi, bi, u are selected such that each function composition is well-defined.

Let the intermediate activations at layer i be denoted by

zi(x; θ) := (fi ◦ . . . ◦ f1)(x).

Finally, ri (the width at layer i) refers to the dimensionality of zi as defined above.

Constructionwhere layer-by-layer learning is impossible. Notice that when σ is a

degree-2 polynomial (say, σ(z) = z2), an L-layer MLP can represent parities up to degree 2L−1– for
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example, a 3-layer MLP (which composes quadratic activations twice) can represent a 4-sparse parity

as a 2-sparse parity of 2-sparse parities. However, Equation (B.1) implies the following:

• An individual layer cannot represent a parity of k > 2 inputs.

• The population gradient (as in Equation (B.4) is zero (since every coordinate of the gradient is the

correlation between a k-wise parity and a polynomial of degree 2).

Thus, this setting serves as an idealized counterexample for layer-by-layer learning: if SGD succeeds

on parities with higher degree than the architecture’s polynomial activations, it must do so by an

end-to-end mechanism. Intuitively, earlier layers can only make progress by knowing how their out-

puts will be used downstream. Concretely, consider the population gradient of the correlation loss,

with respect to a first-layer neuron’s weights w := (W1)j,:. With layer-by-layer training, this gradi-

ent contains no information:

∇w E[−yxi σ′(w⊤x)︸ ︷︷ ︸
degree 1

uj] = 0.

However, in end-to-end training, the presence of downstream layers removes this barrier:

∇w E
[
− yxi σ′(w⊤x)︸ ︷︷ ︸

degree 1

∂fL ◦ . . . ◦ f2
∂(z1)j︸ ︷︷ ︸

degree 2L−2 − 1

]
,

giving the gradient greater representation capacity (in terms of polynomial degree). The question

remains of whether end-to-end training works in this setting, which we resolve positively in small

experiments.

Results: end-to-end trainingworks empirically. We empirically observed successful

training (to 100% accuracy) in a few settings (with SGD, learning rate η = 0.01, batch size B = 32,

and default uniform initialization as described in Appendix B.4.1):

241



• L = 3, n ∈ {10, 20, 30}, k ∈ {1, 2, 3, 4}. Small widths suffice: (r1, r2) = (2, 1). Over 10

random seeds, all models converged within 20000 iterations.

• L = 4, n ∈ {10, 20, 30}, k ∈ {1, 2, 3, 4, 5, 6}. Widths were chosen to be slightly larger for

stability: (r1, r2, r3) = (10, 10, 1). Over 10 random seeds, all models converged within 50000

iterations. Additionally, models trained on (n, k) ∈ {(10, 7), (20, 7), (30, 7), (10, 8)} converged

within 500000 iterations.

As a sanity check, the models failed to converge in experimental setups where k > 2L−1: (L =

2, k ≥ 3) and (L = 3, k ≥ 5).

Discussion. This construction serves as a simple counterexample to the “deep only works if

shallow is good” principle of Malach & Shalev-Shwartz (2019), demonstrating a case where a deep

network can get near-perfect accuracy even when greedy layerwise training (e.g. (Belilovsky et al.,

2019)) cannot beat trivial performance. It remains to characterize these positive empirical results

theoretically, as well as to investigate whether there are pertinent analogues in real data distributions.

B.3.8 Lack of plateaus for wide polynomial-activationMLPs

An interesting qualitative observation from the training curves in Figure B.2 is that the validation

accuracy curves in setting (vi) (width-1000 polynomial-activationMLPs) do not follow the same

“plateau” or ”staircase” pattern as the others. Figure B.13 shows a few additional examples of train-

ing curves for polynomial-activationMLPs, varying the width r and batch size B. We find that the

rate of descent of the validation error increases with both of these parameters; note that this does

not occur with ReLU activations (where there are sharp phase transitions between plateaus at all

batch sizes).
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Figure B.13: Additional training curves for polynomial‐activation MLP architectures (iv), (v), (vi), on the (50, 3)‐sparse
parity problem. Unlike the other architectures, these settings exhibit continuous progress when the width r and batch
size B are large.

This constitutes an exception to this paper’s theme of “hidden progress” behind flat loss (or er-

ror) curves: with enough overparameterization and “over-sampling”, the continuous progress of

SGD in this setting is no longer hidden, and manifests in the training curves. This phenomenon

seems to be specific to certain activation functions (i.e. xk but not ReLU); we leave it for future

work to understand why and when it occurs, as well as potential practical implications.

B.4 Details for all experiments

B.4.1 Deep learning configurations

Losses. Our “robust space” of empirical results use the following loss functions:

• Hinge: ℓ(y, ŷ) := (1− ŷy)+.
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• Square: ℓ(y, ŷ) := (y− ŷ)2.

• Cross entropy: ℓ(y, ŷ) := − log eŷy
1+eŷy .

Additionally, the theoretical analysis considers the correlation loss ℓ(y, ŷ) := −ŷy.

In the configurations corresponding to all of the figures and convergence time experiments, we

used the hinge loss. This was a relatively arbitrary choice (i.e. they appeared to be interchangeable

upon running small experiments); an advantage of the hinge and square losses over cross entropy

is that for architectures that can realize the parity function, there is a zero-loss solution with finite

weights.

Initializations. Our empirical results use the following i.i.d. weight initializations:

• Uniform on the interval [−c, c], where the scale c is chosen for all affine transformation parameters

using the “Xavier initialization” convention (Glorot & Bengio, 2010). The experiments are quite

tolerant to the particular choice of c (as these are not deep networks); this choice, which is the

default in deep learning packages, emphasizes that our positive empirical results hold under a

standard initialization scheme.

• Gaussian with mean 0 and variance σ2, selected using the “Kaiming initialization” convention (He

et al., 2015).

• Bernoulli (i.e. random sign) initialization: the discrete distribution Unif({−c, c}), for the same

choice of c as for the uniform distribution.

2-layerMLPs

We consider 2-layer MLPs f(x;W, b, u) = u⊤σ(Wx+ b) for two choices of activations:

• ReLU: σ(z) := (z)+ = max(0, z).
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Figure B.14: Visualizations of all activation functions considered in this work. As discussed in Section B.4.1, care must
be taken to ensure that the architectures can realize sparse parities with the same bias b (in particular, b = 0) across
varying k. Multiple k‐dependent displacements are shown for the∞‐zigzag and sinusoidal activations.

• Degree-k polynomial: σ(z) := zk.

In both cases, whenever r ≥ k (and, in the case of polynomial activations, choosing the degree to be

k), there exists a width-rMLP which can represent k-sparse parities: for all (n, k) and |S| = k, there

is a setting ofW, b, u such that f(x;W, b, u) = χS(x).

Note that if the output f(x; θ) is a degree-k′ < k polynomial in x (e.g. anMLP with σ(z) = zk′

activations), the architecture is incapable of representing a parity of k inputs. In fact, it is incapable

of representing any function that has a nonzero correlation with parity; this follows from orthogo-

nality (Equation (B.1)).

Single neurons

To explore the limits of concise parameterization for architectures capable of learning parities, we

propose a variety of non-standard activation functions which allow a single neuron to learn sparse

parities. These constructions leverage the fact that the parity is a nonlinear function of the sum of its

inputs w⊤
S x, where wS :=

∑
i∈S ei.
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k-zigzag activation. σ(·) is the piecewise linear function which interpolates the k + 1 points

{(k,+1), (k−2,−1), (k−4,+1), . . . , (−k+2,±1), (−k,∓1)}with k linear regions {(−∞,−k], [−k,−k+

2], . . . , [k− 2, k], [k,+∞)}. Then, σ(w⊤
S x) = χS(x).

Oscillating polynomial activation. σ(·) is the degree-k polynomial which interpolates

the same points as above.

∞-zigzag activation. The infinite extension of the zigzag activation is the triangle wave

function σ(·)which linearly interpolates the infinite set of points
⋃

i∈Z{(2i,+1), (2i + 1,−1)}.

This can express parities of arbitrary degree. The+1 and−1 can be swapped (resulting in an activa-

tion which is equivalent when shifted by a bias term). However, in our experiments, we choose the

sign convention depending on k such that σ(w⊤
S x) = +1. This allows different convergence time

curves to be more directly comparable across different k, since it removes the effects of the bias of

the global minimizer alternating with k.

Sinusoidal activation. σ(z) := sin(z). The sinusoidal neuron sin(w⊤x+ b) can also express

parities of arbitrary degree, since it can interpolate the same set of points as the∞-zigzag activation.

In the experiments, we pick a shift β and use the activation σ(z) := sin( π2 z + β), such that σ(z)

interpolates the same points as the sign convention selected for the∞-zigzag activation. In the ex-

periments in Section 5.3, the sinusoidal activation is additionally scaled by a factor of 2 (z 7→ σ(2z));

this is interchangeable with scaling the learning rate and initialization, and is done to obtain more

robust convergence in the particular setting of (n, k) = (50, 3).

Figure B.14 visualizes all families of activations considered in this paper.
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Parity Transformer

The Transformer experiments use a slightly simplified version of the architecture introduced in

(Vaswani et al., 2017). In particular, it omits dropout, layer normalization, tied input/output em-

bedding weights, and a positional embedding on the special [CLS] token. Including these does not

change the results significantly; they are all present in the preliminary findings in (Edelman et al.,

2022) (in which an “off-the-shelf” Transformer implementation successfully learns sparse parities).

We specify the architecture below.

Our Parity Transformer has the following hyperparameters: sequence length n, token embedding

dimension demb, attention embedding dimension dattn, feedforward embedding dimension dmlp,

and number of headsH. Its trainable parameters (together denoted by θ) are:

• Token embeddings E−1,E+1,E[CLS] ∈ Rdemb and position embeddings P1, . . . , Pn ∈ Rdemb . Let

θemb denote this subset of parameters.

• Attention head matrices:W[h]
Q ,W[h]

K ,W[h]
V ∈ Rdemb×dattn andW[h]

out ∈ Rdattn×demb , for h =

1, . . . ,H. Let θattn denote this subset of parameters.

• MLP weights and biases: W1 ∈ Rdmlp×demb , b1 ∈ Rdmlp ,W2 ∈ Rdmlp×demb , b2 ∈ demb. Let θmlp

denote this subset of parameters.

• Classification head: u ∈ Rdemb .

Then,

ftf(x; θ) := u⊤ (fmlp(fattn(femb(x; θemb); θattn); θmlp)) ,

where these submodules are defined by

• Embedding femb : {±1}n → R(n+1)×demb : femb(x; θemb)i,: := Exi + Pi for i ∈ [n]. We will

include an the extra index [CLS], for which femb(x; θemb)[CLS],: := E[CLS] (with no positional
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embedding). [CLS] stands for “classification”, as in “use the output at this position to classify the

sequence”. This is a standard construction which makes the classifier permutation-invariant.

• Attention block fattn : R(n+1)×demb → Rdemb :

fattn(X; θattn) = X[CLS],: +
H∑
h=1

softmax

(
1√
dattn

X[CLS],:W
[h]
Q (XW[h]

K )⊤
)
W[h]

V W[h]
out,

where softmax(z) := exp(z)/1⊤ exp(z). Note that we have specialized this architecture to a

single output, at the [CLS] position.

• MLP fmlp : Rdemb → Rdemb :

fmlp(z; θmlp) := z+W2σ(W1x+ b1) + b2,

where σ(·) = GeLU(·) (the Gaussian error linear unit) is the standard choice in Transformers.

Training. Each matrix-shaped parameter was initialized using PyTorch’s default “Xavier uni-

form” convention. Unlike the other settings considered in this paper, we were unable to observe

successful convergence beyond a few small (n, k) using standard SGD. As is common practice

when training Transformers, we used Adam (Kingma & Ba, 2014) with default adaptive parameters

β1 = 0.9, β2 = 0.999, ε = 10−8 in our experiments. While there are more fine-grained accounts of

why Adam outperforms vanilla SGD (Zhang et al., 2020; Agarwal et al., 2020), finding the optimal

optimizer configuration and investigating ablations of this optimizer are outside the scope of this

work. In this work, we only tune Adam’s learning rate η.
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PolyNet

For positive integers n, k, the PolyNet architecture is parameterized by weights and biases θ :=

{(wi ∈ Rn, bi ∈ R)}ki=1, and is defined by

fPolyNet(x; θ) :=
k∏

i=1
(w⊤

i x+ bi).

Even with all biases bi set to 0, this architecture can realize a k-wise parity, by setting {wi} = {ej :

j ∈ S} in any permutation.

Details for Figure 5.1 (left)

Figure 5.1 (left) shows training curves from 8 representative configurations, with online i.i.d. sam-

ples from the same distribution, corresponding to the (n = 50, k = 3)-sparse parity problem. The

first row encompasses various MLP settings with standard activations:

• Setting (i): width-10MLP with ReLU activation (B = 32, η = 0.5).

• Setting (i): width-10MLP with ReLU activation, with large batches (B = 1024, η = 0.05).

• Setting (ii): width-100MLP with ReLU activation, with tiny batches (B = 1, η = 0.05).

• Setting (iv): width-10MLP with polynomial σ(z) = z3 activation (B = 32, η = 0.05).

The second row shows other settings:

• Setting (vii): width-1 MLP with a piecewise linear k-zigzag activation (B = 32, η = 0.2).

• Setting (x): width-1 MLP with a sinusoidal activation (scaled and shifted for k = 3; see the discus-

sion in Section B.4.1) (B = 32, η = 0.05).

249



• Setting (*iii): Parity Transformer, with demb = 1024, dattn = 8,H = 128 (B = 32, η = 5×10−4).

• Setting (xv): degree-3 PolyNet (B = 32, η = 0.07).

Details for Figure B.2

The first row uses the width-10 ReLUMLP configuration (ii), holding B = 32 and η = 0.1 while

varying the task difficulty across 6 settings: (n, k) ∈ {(30, 3), (60, 3), (90, 3), (30, 4), (30, 5), (30, 6)}.

The remaining plots are all for the (50, 3) setting.

The second row uses the k = 3 PolyNet configuration (xv), varying (B, η) ∈ {(1, 0.005), (4, 0.01), (16, 0.1),

(64, 0.1), (256, 0.1), (1024, 0.1)}.

The third row uses the minimally-wide configurations (*i), (*ii), (vii), (viii), (xi), (xii) (thus pre-

senting an example for each non-standard activation), holding batch size B = 1. η = 0.1 in each of

the cases except (*ii), where η = 0.01.

The fourth row uses three large architectures: settings (iii), (vi), and (*iii), with (B, η) ∈ {(1, 0.1), (1024, 0.1),

(1, 0.001), (1024, 0.01), (32, 0.0003), (1024, 0.0003).} (*iii) uses the Adam optimizer instead of

SGD.

Details for Figure B.6

Figure B.6 contains scaling plots in various settings for the median convergence time tc. Below, we

give comprehensive details about these settings. For each of these runs, we chose B = 32 (settings

with smaller batch sizes exhibited additional variance; with larger batch sizes, the models were slower

to converge), as well as the hinge loss. We used SGDwith constant learning rate η (enumerated be-

low), except in setting (*iii).

The top row showsMLP settings (i) through (vi). From left to right:

• Setting (i): width-10MLP with ReLU activation (η = 1).
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• Setting (ii): width-100MLP with ReLU activation (η = 1).

• Setting (iii): width-1000MLP with ReLU activation (η = 1).

• Setting (iv): width-10MLP with σ(z) = zk activation (η = 0.01).

• Setting (v): width-100MLP with σ(z) = zk activation (η = 0.01).

• Setting (vi): width-1000MLP with σ(z) = zk activation (η = 0.01).

The bottom row shows miscellaneous settings. From left to right:

• Setting (vii): width-1 MLP with degree-k oscillating polynomial activation interpolating the par-

ity function (η = 0.01).

• Setting (xiv): single sinusoidal neuron with no second layer (η = 0.01).

• Setting (*iii): Parity Transformer, with demb = 1024, dattn = 8,H = 128 (B = 32, η = 3×10−4).

• Setting (iv): degree-k PolyNet (η = 0.05).

• Setting (ii): width-100MLP with ReLU activation (η = 1), showing an expanded range of n for

smaller k.

• Setting (xv): width-100MLP with σ(z) = zk activation (η = 1), showing an expanded range of n

for smaller k.

B.4.2 Training curves and convergence time plots

For all example training curves in all figures (in Sections 5.3 and 5.5, as well as the appendix), popu-

lation losses and accuracies are approximated using a batch of size 8192, sampled once at the begin-

ning of training from the same distributionDS. All plots of single representative training runs use a
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fixed random seed (torch.manual_seed(0)); whenR training runs are shown, seeds 0, . . . ,R− 1 are

used.

In Figures B.3 and B.4, validation accuracies were recorded every 10 iterations, and a run was

recorded as converged if it reached 100% accuracy within 105 iterations; we report the 10th per-

centile over 25 random seeds, to reduce variance arising from the more initialization-sensitive set-

tings. In Figure B.5, coarse-grained scaling estimates for the (10th percentile) convergence time are

computed as follows: for n ∈ N := {10, 20, 30}, the smallest α is chosen such that tc ≤ c·(n−n0)α,

choosing n0 = minN − 1 = 9, so that c = tc at n = 10. These estimates are calculated to give

quantitative order-of-magnitude upper bounds for the convergence time. Indeed, the power-law

convergence times do not extrapolate at a constant learning rate; see Figure 5.2 (right), the “larger n”

plots in Figure B.6, and the discussion on batch sizes and learning rates in Appendix B.3.2.

To reduce computational load, for the larger-scale probes of convergence times tc, validation ac-

curacies were instead checked on a sample of size 128. For the underparameterized networks (i.e.

unable to represent parity, but can still get a meaningful gradient signal), this threshold was changed

to 10 consecutive batches with accuracy at least 55%. Note that for parity learning in particular,

a weak learner can be converted into a strong learner: there is an efficient algorithm (Goldreich &

Levin, 1989; Kushilevitz &Mansour, 1993) which, given a classifier which achieves 1/2+ ε accuracy

onDS for a constant ε > 0, outputs Swith high probability.

In the median convergence time plots in Figure 5.1 (right), Figure 5.2 (right), and Figure B.6,

error bars for median convergence times in all plots are 95% confidence intervals, computed from

100 bootstrap samples. Each point on the each curve corresponds to 1000 random trials. Halted

curves signify more than 50% of runs failing to converge within T = 105 iterations (hence, infinite

medians).
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B.4.3 Implementation, hardware, and compute time

All training experiments were implemented using PyTorch (Paszke et al., 2019).

Although most of the networks considered in the main empirical results are relatively small, a

large (∼ 108) total number of models were trained to certify the “robust space” of results and obtain

precise scaling curves. These individual experiments were not large enough to benefit from GPU

acceleration; on an internal cluster, the CPU compute expenditure totaled approximately 1500

CPU hours.

A subset of these experiments stood to benefit from GPU acceleration: width r ≥ 100MLPs;

scaling behaviors for n ≥ 100; all experiments involving Transformers. These were performed with

NVIDIA Tesla P100, Tesla P40, and RTXA6000 GPUs on an internal cluster, consuming a total of

approximately 200 GPU hours.
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C
Pareto Frontiers

C.1 Additional relatedwork

Learning parities with neural networks. Parities (or XORs) have been shown to be

computationally hard to learn for SQ algorithms including gradient-based methods. Various works

make additional assumptions to avoid these hardness results to show that neural networks can be

efficiently trained to learn parities (Daniely &Malach, 2020; Shi et al., 2021; Frei et al., 2022a;
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Malach et al., 2021). More recently, Barak et al. (2022) have focused on understanding how neural

networks training on parities without any additional assumption behaves at this computational-

statistical limit. They show that one step of gradient descent on a single neuron is able to recover the

indices corresponding to the parity with nO(k) samples/computation. Abbe et al. (2023) improve

this bound toO(nk−1) online SGD steps and generalize the result to handle hierarchical staircases

of parity functions which requires a multi-step analysis. Telgarsky (2022) studies the problem of

2-sparse parities with two-layer neural networks trained with vanilla SGD (unlike our restricted two-

step training algorithm) and studies the margins achieved post training. They use the margins to get

optimal sample complexity Õ(n2/ε) in the NTK regime. Going beyond NTK, they analyze gradi-

ent flow (with certain additional modifications) on an exponential wide 2-layer network (making

it computationally inefficient) to get the improved sample complexity of Õ(n/ε). In contrast to

this, our goal is to improve sample complexity while maintaining computational efficiency, using

random guessing via the sparse initialization.

Learning single-index/multi-index models over Gaussians with neural networks.

Another line of work (Arous et al., 2021; Ba et al., 2022; Damian et al., 2022; Bietti et al., 2022;

Damian et al., 2023) has focused on learning functions that depend on a few directions, in particu-

lar, single-index and multi-index models over Gaussians using neural nets. These can be thought of

as a continuous analog to our sparse parity problem. In a similar analysis (as parities) of online SGD

for single index models, Arous et al. (2021) propose the notion of an information exponent which

captures the initial correlation between the model and the target function, and get convergence re-

sults similar to the parity setting with sample complexityO(nk−1) for information exponent k (can

be thought similar to the k in the parity learning problem). Damian et al. (2023) improve this re-

sult by showing that a smoothed version of GD achieves the optimal sample complexity (for CSQ

algorithms) of (nk/2). Going beyond CSQ algorithms, Chen &Meka (2020) provide a filtered-PCA
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algorithm that achieves polynomial dependence on the dimension n in both compute and sample

complexity. Note that this is not achievable for CSQ algorithms. For the parity learning problem,

the SQ computational lower bounds are Ω(nk) (as described in Section 6.3.1).

Empirical inductive biases of largeMLPs. Our experiments on tabular benchmarks sug-

gest that wide and sparsely-initialized vanilla MLPs can sometimes close the performance gap be-

tween neural networks and decision tree ensemble methods. This corroborates recent findings that

vanilla MLPs have strong enough inductive biases to generalize nontrivially in natural data modali-

ties, despite the overparameterization and lack of architectural biases via convolution or recurrence.

Notably, many state-of-the-art computer vision models have removed convolutions (Dosovitskiy

et al., 2020; Tolstikhin et al., 2021); recently, (Bachmann et al., 2023) demonstrate that even large

vanilla NLPs can compete with convolutional models for image classification. Yang et al. (2022a)

find monotonic improvements in terms of model width, which are stabilized by their theoretically-

motivated hyperparameter scaling rules.

Multi-resource scaling laws for deep learning. Many empirical studies (Kaplan et al.,

2020; Henighan et al., 2020; Hoffmann et al., 2022; Zhai et al., 2022), motivated by the pressing

need to allocate resources effectively in large-scale deep learning, corroborate the presence and regu-

larity of neural scaling laws. Precise statements and hypotheses vary; Kaplan et al. (2020) fit power-

law expressions which predict holdout validation log-perplexity of a language model in terms of

dataset size, model size, and training iterations (m, r,T in our notation). The present work shows

how such a joint dependence onm × r × T can arise from a single feature learning problem with a

computational-statistical gap. Numerous works attempt to demystify neural scaling laws with theo-

retical models (Bahri et al., 2021; Hutter, 2021; Michaud et al., 2023); ours is unique in that it does

not suppose a long-tailed data distribution (the statistical complexity of identifying a sparse parity is
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benign). We view these accounts to be mutually compatible: we do not purport that statistical query

complexity is the unique origin of neural scaling laws, nor that there is a single such mechanism.

C.2 Proofs

C.2.1 Multi-resource lower bound for sparse parity learning

For some target function f and some parameters θ, we denote the population gradient over the dis-

tributionD by:

g(f, θ) = E
x∼D

[∇θℓ(hθ(x), f(x))]

and we denote by gi(·, ·) the gradient w.r.t. the i-th coordinate of θ.

Similarly, denote the empirical gradient by:

ĝ(f, θ) =
1
m
∑
x∈S
∇θℓ(hθ(x), f(x))

and ĝi(·, ·) denotes the i-th coordinate of the empirical gradient.

Lemma C.1. For every θ and every i it holds that

E
S∼(nk)

[(
gi(χS, θ)− ℓ0(hθ(x)) ·

∂

∂θi
hθ(x)

)2
]
≤ 1(n

k
)
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Proof. Fix some i ∈ [r],

E
S∼(nk)

[(
gi(χS, θ)− ℓ0(hθ(x)) ·

∂

∂θi
hθ(x)

)2
]

= E
S∼(nk)

[
E

x∼D

[
χS(x) ·

∂

∂θi
hθ(x)

]2]

=
1(n
k
) ∑

S∈(nk)

E
x∼D

[
χS(x) ·

∂

∂θi
hθ(x)

]2
≤ 1(n

k
)

where the last inequality is from Parseval, using the assumption ‖∇hθ(x)‖∞ ≤ 1.

Proof of Proposition 6.3. Using the Lemma C.1 we get:

E
S∼(nk)

[
max
i,t

(
gi(χS, θ

∗
t )− ℓ0(hθ∗t (x)) ·

∂

∂θi
hθ∗t (x)

)2
]

≤ E
S∼(nk)

[ r∑
i=1

T∑
t=1

(
gi(χS, θ

∗
t )− ℓ0(hθ∗t (x)) ·

∂

∂θi
hθ∗t (x)

)2
]

≤ rT(n
k
) ≤ δτ2

Therefore, taking expectation over the choice of θ0

E
θ0

E
S∼(nk)

[
max
i,t

(
gi(χS, θ

∗
t )− ℓ0(hθ∗t (x)) ·

∂

∂θi
hθ∗t (x)

)2
]

= E
S∼(nk)

E
θ0

[
max
i,t

(
gi(χS, θ

∗
t )− ℓ0(hθ∗t (x)) ·

∂

∂θi
hθ∗t (x)

)2
]
≤ δτ2/2

So, there exists some S ∈
(n
k
)
s.t.

E
θ0

[
max
i,t

(
gi(χS, θ

∗
t )− ℓ0(hθ∗t (x)) ·

∂

∂θi
hθ∗t (x)

)2
]
≤ δτ2/2
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Observe the noise variable ξt = ℓ0(hθ∗t (x)) ·
∂
∂θi hθ∗t (x) − ĝi(χS, θ

∗
t ,St). FromMarkov’s inequality

and Assumption 6.2, with probability at least 1− δ over the choice of θ0, for all t ≤ T and i ∈ [r]:

∣∣∣∣ĝi(χS, θ∗t ,St)− ℓ0(hθ∗t (x)) ·
∂

∂θi
hθ∗t (x)

∣∣∣∣ ≤ τ

therefore, we get that ξ1, . . . , ξT ∈ [−τ, τ]r (i.e., this is a valid choice of adversarial noise variables),

and SGD follows the trajectory θ⋆1 , . . . , θ⋆T.

C.2.2 Feature selection with an over-sparse initialization and a wide network

Warmup: existence of good subnetworks

Let hw(x) = σ(〈w,x〉) be a single ReLU neuron, where σ(x) = max{x, 0}. Fix some 4k < s ≤ n.

Assume we initializew ∈ {0, 1}n by randomly choosing s coordinates and setting them to 1, and

setting the rest to zero. Fix some subset S ⊆
(n
k
)
. We say thatw is a good neuron if S ⊆ w. We say

thatw is a bad neuron if it is not a good neuron.

Lemma C.2. With probability at least (s/2n)k over the choice ofw,w is a good neuron.

Proof. There are
(n
s
)
choices forw, and there are

(n−k
s−k
)
good choices forw. Observe that:

(
n
s

)
=

n(n− 1) · · · (n− k+ 1)
s(s− 1) · · · (s− k+ 1)

(
n− k
s− k

)
≤
(
2n
s

)k(n− k
s− k

)

and therefore the required follows.

Lemma C.3. Assume k is even, s is odd and k < s
4 . There exist constants Ck, ck s.t. ifw is a good

neuron, then:

1. For all i ∈ S,

E
x

[
∂

∂wi
hw(x) · χS(x)

]
= Ck,s
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2. For all i /∈ S,

E
x

[
∂

∂wi
hw(x) · χS(x)

]
= wick,s

and furthermore, there exists a constant κk s.t.
∣∣Ck,s

∣∣ > κk
( s
k−1
)−1/2 and |ck,s||Ck,s| ≤

4k
s .

Proof. First, consider the case where i ∈ S. Therefore,

E
x∼{±1}n

[
∂

∂wi
hw(x) · χS(x)

]
= E

x∼{±1}n

[
σ′(〈w,x〉) · xi · χS(x)

]
= E

x∼{±1}n

 1I{∑
j∈w xj≥0

} χS\{i}(x)


= E
x∼{±1}s

[(
1
2
Majs(x) +

1
2

)
χS\{i}(x)

]
=

1
2
M̂ajs(S \ {i})

where S \ {i} is interpreted as a subset of [s]. From symmetry of the Majority function, all Fourier

coefficients of the same order are equal. Therefore, the first condition holds for Ck,s =
1
2M̂ajs(k−1),

where M̂ajs(k− 1) denotes the (k− 1)-th order Fourier coefficient.

When i ∈ S \w we get:

E
x∼{±1}n

[
∂

∂wi
hw(x) · χS(x)

]
= E

x∼{±1}n

[
σ′(〈w,x〉) · xi · χS(x)

]
= E

x∼{±1}n

 1I{∑
j∈w xj>0

} χS∪{i}(x)


= E
x∼{±1}s

[(
1
2
Majs(x) +

1
2

)
χS∪{i}(x)

]
=

1
2
M̂ajs(S ∪ {i})
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Finally, when i /∈ Swe get:

E
x∼{±1}n

[
∂

∂wi
hw(x) · χS(x)

]
= E

x∼{±1}n

[
σ′(〈w,x〉) · xi · χS(x)

]
= E

[
σ′(〈w,x〉) · χS(x)

]
E
xi
[xi] = 0

Therefore, the second condition holds with ck = 1
2M̂ajs(k+ 1).

Now, from Theorem 5.22 in O’Donnell (2014) we have:

(
s

k− 1

)
· M̂ajs(k− 1)2 =

∑
S′∈( s

k−1)

M̂ajs(S
′)2 ≥ ρ(k− 1)

where ρ(v) = 2
πv2v
(v−1

v−1
2

)
. So, we get

∣∣Ck,s
∣∣ ≥ 1

2
√
ρ(k− 1)

( s
k−1
)−1/2. Using the same Theorem, we

also have:

(
s

k+ 1

)
· M̂ajs(k+ 1)2 =

∑
S′∈( s

k+1)

M̂ajs(S
′)2 ≤ 2ρ(k+ 1) < 2ρ(k− 1)

So, we get:

∣∣ck,s∣∣∣∣Ck,s
∣∣ ≤

√
2ρ(k− 1)

( s
k+1
)−1/2√

ρ(k− 1)
( s
k−1
)−1/2 =

√
2

√√√√( s
k+1
)( s

k−1
)

=

√
2k(k+ 1)

(s− k+ 2)(s− k+ 1)
≤

√
4k2

(1/4)s2
= 4

k
s

Lemma C.4. Assume that k < s
4 . Ifw is a bad neuron, then:

∥∥∥∥Ex
[

∂

∂w
hw(x) · χS(x)

]∥∥∥∥
1
≤ Ck,s
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Proof. First, assume that |S \w| ≥ 2. In this case, there exist i, i′ ∈ S s.t. wi = wi′ = 0 and i 6= i′.

Fix some j ∈ [n], and choose some j′ ∈ i, i′ s.t. j′ 6= j.

E
x∼{±1}n

[
∂

∂wj
hw(x) · χS(x)

]
= E

x∼{±1}n

[
σ′(〈w,x〉) · χS(x) · xj

]
= E

x∼{±1}n

[
σ′(〈w,x〉) · χS\{j′}(x) · xjxj′

]
= E

x′j

[
xj′
]
· E
x[n]\{j′}

[
σ′(〈w,x〉) · χS\{j′}(x) · xj

]
= 0

and this gives the required.

Now, assume that S\w = {i} for some index i. For every j 6= i, similarly to the previous analysis,

we have:

E
x∼{±1}n

[
∂

∂wj
hw(x) · χS(x)

]
= 0

Finally, similarly to the proof of Lemma C.3, we have:

E
x∼{±1}n

[
∂

∂wi
hw(x) · χS(x)

]
=

1
2
M̂ajs(S \ {i}) = Ck,s

and so we get the required.

End-to-end result

We train the following network:

fW,b,u,β(x) =

r∑
i=1

uiσ (〈wi,x〉+ bi) + β

We fix some k ≤ s < n and initialize the network as follows:

• Randomly initializew1, . . . ,wr/2 ∈ {0, 1}n s.t. ‖wi‖1 = s (i.e., eachwi has s active coordi-
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nates), with a uniform distribution over all
(n
s
)
subsets.

• Randomly initialize b1, . . . , br/2 ∼
{
β1, . . . , βk/2−1

}
where βi =

1
2k (−k+ 2i+ 1/16).

• Randomly initialize u1, . . . , ur/2 ∼ {±1} uniformly at random.

• Initializewr/2+1, . . . ,wr, br/2+1, . . . , br s.t. wi = wi−r/2 and bi = bi−r/2 (symmetric

initialization).

• Initialize ur/2+1, . . . , ur s.t. ui = −ui−r/2.

• Initialize β = 0

Let ℓ(ŷ, y) = max(1 − yŷ, 0) be the hinge-loss function. Given some distributionD overX ×

{±1}, define the loss of f over the distribution by:

LD(f) = E
(x,y)∼D

[ℓ(f(x), y)]

Similarly, given a sample S ⊆ X × {±1}, define the loss of f on the sample by:

LS(f) =
1
|S|

∑
(x,y)∈S

ℓ(f(x), y)

We train the network by gradient descent on a sample S with ℓ2 regularization (weight decay):

θ(t+1) = (1− λ(t))θ(t) − η(t)∇LS(fθ(t))

We allow choosing learning rate η, the weight decay λ differently for each layer, separately for the

weights and biases, and for each iteration.
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Lemma C.5. Fix some τ > 0, δ > 0. Let S be a set of m examples chosen i.i.d. fromD. Then, if

m ≥ 4 log(4nr/δ)
τ2 , with probability at least 1− δ over the choice of S , it holds that:

∥∥∇W,bLD(fW,b,u,β)−∇W,bLS(fW,b,u,β)
∥∥
∞ ≤ τ

Proof. Denote by θ ∈ Rnr+r the set of all parameters inW,b. For every i ∈ [nr + r], from

Hoeffding’s inequality, we have:

Pr
(∣∣∣∣ ∂∂θiLD(fθ)−

∂

∂θi
LS(fθ)

∣∣∣∣ ≥ τ
)
≤ 2 exp(−mτ2/4) ≤ δ

2nr

and the required follows from the union bound.

Given some initialization ofW,b, for every j denote by Ij ⊆ [r/2] the set of indices of neu-

rons with goodweights and bias equal to βj. We say that an initialization is r
′-good if for all jwe have

r′/2 ≤
∣∣Ij∣∣ ≤ 2r′.

Let g be some vector-valued function. We define:

‖g‖∞,2 = sup
x
‖g(x)‖2

For some mapping ψ : X → Rr and some B > 0, denote byHψ,B the class of linear functions of

norm at most B over the mapping ψ:

Hψ,B = {hψ,u : ‖u‖2 ≤ B}

where hψ,u(x) = 〈ψ(x),u〉.

Denote by φ(t) the output of the first layer of fW,b,u,β after t iterations of GD*.

*We assume 1 is appended to the vector for allowing bias
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Lemma C.6. Fix some δ > 0. Fix some r′-good initializationW,b. Let η = 1
2k
∣∣Ck,s

∣∣−1, and let
τ ≤ 1

η16kn . Assume that m ≥ 4 log(4nr/δ)
τ2 . Then, there exists some mapping ψ s.t. the following holds:

1. ‖ψ‖∞,2 ≤
√
8kr′

2. There exists u⋆ s.t. LD(hψ,u⋆) ≤
√
4kr′Bk√

s , with ‖u⋆‖2 ≤ Bk for some constant Bk.

3. With probability at least 1− δ over the choice of S ∼ Dm, we have

∥∥∥ψ − φ(1)
∥∥∥
∞,2
≤ 4kr′nητ

Proof. We construct two mappings ψ, ψ⋆ as follows.

• We will denote ψ0(x) = ψ⋆0(x) = 1 to allow a bias term.

• For every i, ifwi is a bad neuron, we set ψi(x) = ψ⋆i (x) = 0.

• For every good neuronwi s.t. i ∈ Ij, we set:

– ψ⋆i (x) = σ
(
ηCk,s

∑
j′∈S xj′ + βj

)
– ψi(x) = σ

(
ηCk,s

∑
j′∈S xj′ + ηck,s

∑
j′∈wi\S xj′ + βj

)
– ψ⋆i+r/2(x) = σ

(
−ηCk,sxj′ + βj

)
– ψi+r/2(x) = σ

(
−ηCk,s

∑
j′∈S xj′ + ηck,s

∑
j′∈wi\S xj′ + βj

)
Wewill show that ψ⋆ achieves loss zero, and that ψ approximates it. We assume Ck,s > 0 and the

case of Ck,s < 0 is derived similarly.

First, notice that from Lemma C.3,

∣∣ηck,s∣∣ = 1
2k

∣∣ck,s∣∣∣∣Ck,s
∣∣ ≤ 2

s
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Claim: for every u,
∣∣LD(hψ,u)− LD(hψ⋆,u)

∣∣ ≤ ∥u∥
√
4kr′√
s

Proof: Observe that

∣∣LD(hψ,u)− LD(hψ⋆,u)
∣∣ ≤ E

D

[∣∣ℓ(hψ,u(x), y)− ℓ(hψ⋆,u(x), y)
∣∣] ≤ E

D

[∣∣hψ⋆,u(x)− hψ,u(x)
∣∣]

= E
D
[|〈ψ(x)− ψ⋆(x),u〉|]

C.S
≤ ‖u‖E

D
[‖ψ(x)⋆ − ψ(x)‖]

Jensen
≤ ‖u‖

√
E
D

[
‖ψ(x)⋆ − ψ(x)‖2

]
= ‖u‖

√∑
i
E
D

[
(ψ⋆i (x)− ψi(x))2

]

≤ ‖u‖

√√√√√ ∑
i is good

E
D

ηck,s
∑

j′∈wi\S

xj′

2 ≤ ‖u‖√4kr′ ∣∣ηck,s∣∣√s
≤ ‖u‖

√
4kr′√
s

Claim: There exists u⋆ with norm ‖u⋆‖ ≤ Bk and LD(hψ⋆,u⋆) = 0.

Proof: For every x, denote sx =
∑

j∈S xj, and observe that sx ∈ {−k,−k+2, . . . , k−2, k} =: S

and χS(x) = sx mod 2. For every j, denote v+j (s) = σ( 1
2k s + βj) and v

−
j (s) = σ(− 1

2k s +

bj). Then, for every s ∈ S denote v(s) = (1, v+1 (s), . . . , v
+
k/2−1, v

−
1 (s), . . . , v

−
k/2−1(s)) ∈ Rk.

Observe thatV = {v(s)}s∈S ∈ Rk×k has linearly independent rows, and therefore there exists

ν = (ν0, ν+1 , . . . , ν
+
k/2−1, ν

−
1 , . . . , ν

−
k/2−1) ∈ Rk s.t. v(s)⊤ν = s mod 2. Now, define u⋆ s.t. for

every bad iwe set u⋆i = 0, and for every i ∈ Ij we set u⋆i = 1
|Ij| ν

+
j and u⋆i+r/2,− = 1

|Ij| ν
−
j , and set

u⋆0 = ν0. Observe that for every x ∈ X we have:

〈ψ(x),u⋆〉 = ν0 +
∑
j

1∣∣Ij∣∣ ∑i∈Ij (v+j (sx)ν+j + v−j (sx)ν
−
j ) =

〈
v(sx)⊤ν

〉
= sx mod 2 = χS(x)

and therefore LD(hψ,u⋆) = 0. Additionally, observe that

‖u⋆‖2 = ν20 +
∑
j

1∣∣Ij∣∣2 ((ν+j )2 + (ν−j )
2) ≤ ‖ν‖22

266



Nowwe prove the statements in the main lemma:

1. For every x ∈ X we have

‖ψ(x)‖22 =
∑
j

∑
i∈Ij

(ψi(x)
2 + ψi+r/2(x)

2) ≤ 4
∑
j

∣∣Ij∣∣ ≤ 8kr′

2. Follows from the two previous claims.

3. Assume we choose λ = 1 for the weights of the first layer, λ = 0 for the biases of the first

layer, η = 1
2k
∣∣Ck,s

∣∣−1 for the weights of the first layer, and η = 0 for all other parameters.

From Lemma C.5, w.p. at least 1− δwe have:

∥∥∇W,bLD(fW,b,u,β)−∇W,bLS(fW,b,u,β)
∥∥
∞ ≤ τ

Denote byw(1)
i the i-th weight after the first gradient step, and denotew⋆

i := −η∇wiLD(fW,b,u,β)

and ŵi := −η∇wiLS(fW,b,u,β). By the choice of λ, we getw
(1)
i = ŵi. Observe that for all

i:

‖ŵi −w⋆
i ‖∞ = η

∥∥∇wiLS(fW,b,u,β)−∇wiLD(fW,b,u,β)
∥∥ ≤ ητ

Claim: For all i, j, if w⋆
i,j = 0, then

∣∣∣w⋆
i,j − w(1)

i,j

∣∣∣ ≤ 1
16kn .

Proof : We have
∣∣ŵi,j

∣∣ ≤ ητ, and the claim follows from the fact that ητ ≤ 1
16kn .

First, consider the case wherewi is a bad neuron. In this case, by Lemma C.4, we have

‖w⋆
i ‖1 ≤

1
2k and ‖w

⋆
i ‖0 ≤ 1, and from the previous claim we get

∥∥∥w(1)
i −w⋆

i

∥∥∥
1
≤ ητ+ 1

16k .

Therefore, for all x ∈ X we get:

∣∣∣〈w(1)
i ,x

〉∣∣∣ = ∣∣∣〈w(1)
i −w⋆

i +w⋆
i ,x
〉∣∣∣ ≤ (‖w⋆

i ‖1 +
∥∥∥w⋆

i −w
(1)
i

∥∥∥
1

)
‖x‖∞ ≤

10
16k

+ ητ
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Since at initialization we have bi ≤ − 15
16k , and we have ητ ≤

1
16k , for all x ∈ X :

σ
(〈

w
(1)
i ,x

〉
+ bi

)
= 0 = ψi(x)

Now, assume thatwi is a good neuron. In this case, by Lemma C.3, we have

w⋆
i,j =


ηCk,s j ∈ S

wi,jηck,s j /∈ S

Observe that ψi(x) = σ (〈w⋆
i ,x〉+ bi), and therefore:

∣∣∣ψi(x)− σ
(〈

w
(1)
i ,x

〉
+ bi

)∣∣∣ ≤ ∣∣∣〈w(1)
i −w⋆

i ,x
〉∣∣∣ ≤ ∥∥∥w(1)

i −w⋆
i

∥∥∥
1
≤ nητ

Similarly, in this case we will get
∣∣∣ψi+r/2(x)− σ

(〈
w

(1)
i+r/2,x

〉
+ bi+r/2

)∣∣∣ ≤ nητ. Now the

required follows from all we showed.

Lemma C.7. Fix some mappings ψ, ψ′ and somew. Then, for for every distributionD:

∣∣LD(hψ,w)− LD(hψ′,w)
∣∣ ≤ ‖w‖ ∥∥ψ − ψ′

∥∥
∞,2

and for every sample S :

∣∣LS(hψ,w)− LS(hψ′,w)
∣∣ ≤ ‖w‖ ∥∥ψ − ψ′

∥∥
∞,2
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Proof. Observe that, since ℓ is 1-Lipschitz:

|LD(hψ′,w)− LD(hψ,w)| ≤ E
(x,y)∼D

[∣∣ℓ(hψ′,w(x), y)− ℓ(hψ′,w(x), y)
∣∣]

≤ E
D

[∣∣hψ′,w(x)− hψ,w(x)
∣∣] ≤ E

D

[∣∣〈ψ′(x)− ψ(x),w
〉∣∣]

≤ E
D

[∥∥ψ′(x)− ψ(x)
∥∥ ‖w‖] ≤ ‖w‖ ∥∥ψ − ψ′

∥∥
∞,2

and similarly we get: ∣∣LS(hψ′,w)− LS(hψ,w)
∣∣ ≤ ‖w‖ ∥∥ψ − ψ′

∥∥
∞,2

Lemma C.8. Fix some mapping ψ, and let S be a sample of size m sampled i.i.d. fromD. Then, with

probability at least 1− δ over the choice of S , for every ψ′ and for every h ∈ Hψ′,B, we have:

LD(h) ≤ LS(h) +
(2B ‖ψ‖∞,2 + 1)

√
2 log(2/δ)

√
m

+ 2B
∥∥ψ − ψ′

∥∥
∞,2

Proof. First, observe that using Theorem 26.12 in Shalev-Shwartz & Ben-David (2014), with proba-

bility at least 1− δ over the choice of S , for every hψ,w ∈ Hψ,B we have:

LD(hψ,w) ≤ LS(hψ,w) +
(2B ‖ψ‖∞,2 + 1)

√
2 log(2/δ)

√
m
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In this case, using the previous lemma, for every ψ′ and every hψ′,w ∈ Hψ′,B we have:

LD(hψ′,w) ≤ LD(hψ,w) + B
∥∥ψ − ψ′

∥∥
∞,2

≤ LS(hψ,w) +
(2B ‖ψ‖∞,2 + 1)

√
2 log(2/δ)

√
m

+ B
∥∥ψ − ψ′

∥∥
∞,2

≤ LS(hψ′,w) +
(2B ‖ψ‖∞,2 + 1)

√
2 log(2/δ)

√
m

+ 2B
∥∥ψ − ψ′

∥∥
∞,2

Lemma C.9. Fix ε, δ ∈ (0, 1/2). Let ψ be some mapping s.t. there existsw⋆ satisfying ‖w⋆‖ ≤ B

and LD(hψ,w⋆) ≤ ε. Let S be a sample of size m fromD. With probability at least 1 − 2δ over

the choice of S , there exists a choice of learning rate, weight decay and truncation parameters s.t. if∥∥φ(1) − ψ
∥∥
∞,2 ≤

ε
B and T

log(T) ≥
100
ε2

(
‖ψ‖∞,2 + B−1

)2
and m ≥ (4

√
2B∥ψ∥∞,2+1)

2 log(2/δ)
ε2 , GD

returns a function h s.t. LD(h) ≤ 7ε.

Proof. Consider the following convex function:

L(w) = LS(hφ(1),w) +
λ
2
‖w‖2

Claim 1: for all x and y, we have
∣∣ℓ(hψ,w⋆(x), y)

∣∣ ≤ B ‖ψ‖∞,2.

Proof : Observe that,

∣∣ℓ(hψ,w⋆(x), y)
∣∣ ≤ ∣∣hψ,w⋆(x)

∣∣ = |〈ψ(x),w⋆〉| ≤ ‖ψ(x)‖2 ‖w
⋆‖ ≤ B ‖ψ‖∞,2

Claim 2: W.p. at least 1− δwe have LS(hψ,w⋆) ≤ ε+
B∥ψ∥∞,2

√
2 log(2/δ)

√
m
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Proof : fromHoeffding’s inequality, using the previous claim:

Pr [LS(h) ≥ LD(h) + t] ≤ exp

(
− mt2

2 ‖ψ‖2∞,2 B2

)

And therefore,

Pr

[
LS(hψ,w⋆) ≥ LD(hψ,w⋆) +

‖ψ‖∞,2 B
√
2 log(2/δ)

√
m

]
≤ δ/2

and the required follows from the assumption LD(hψ,w⋆) ≤ ε

Claim 3: L(w⋆) ≤ 2ε+
B∥ψ∥∞,2

√
2 log(2/δ)

√
m + λB2

2 .

Proof : from the previous claim, we have LS(hψ,w⋆) ≤ ε +
B∥ψ∥∞,2

√
2 log(2/δ)

√
m . Using Lemma

C.7, we get LS(hφ(1),w⋆) ≤ ε+
B∥ψ∥∞,2

√
2 log(2/δ)

√
m + B

∥∥ψ − φ(1)
∥∥
∞,2 and the required follows.

Claim 3: there exists a step-size schedule for GD s.t. LS(wT) ≤ infw LS(w)+
100(∥ψ∥∞,2+ε/B)2(1+log(T))

λT .

Proof : Using Shamir & Zhang (2013)

Combining the previous claims, we get:

L(wT) ≤ 2ε+
B ‖ψ‖∞,2

√
2 log(2/δ)

√
m

+
λB2

2
+
100(‖ψ‖∞,2 + ε/B)2(1+ log(T))

λT

Now, choosing λ = ε
B2 we get:

L(wT) ≤ 2ε+
B ‖ψ‖∞,2

√
2 log(2/δ)

√
m

+
100B2(‖ψ‖∞,2 + ε/B)2(1+ log(T))

εT

So, if T
log(T) ≥

100
ε2

(
‖ψ‖∞,2 + B−1

)2
andm ≥ (4

√
2B∥ψ∥∞,2+1)

2 log(2/δ)
ε2 we have L(wT) ≤ 4ε

and therefore ‖wT‖2 ≤ 2
λL(wT) ≤ 8B2.
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In this case, using Lemma C.8, we w.p. at least 1− δ:

LD(hφ(1),wT) ≤ LS(hφ(1),wT
) +

(4
√
2B ‖ψ‖∞,2 + 1)

√
2 log(2/δ)

√
m

+ 2B
∥∥∥ψ − φ(1)

∥∥∥
∞,2
≤ 7ε

Lemma C.10. Fix some δ. Assume we initialize a network of size r ≥ 20k(2n/s)k log
(2k

δ
)
. Then,

w.p. at least 1− δ,W,b is r′-good for r′ = r
2k(s/2n)

k.

Proof. From Lemma C.2, the probability of drawing a good neuron is≥ (s/2n)k. So, for every i,

the probability of drawing a good neuron with bias βi is at least
1
k(s/2n)

k. Denote by r′i the number

of good neurons with bias βi. Observe that E[r
′
i] =

r
2k(s/2n)

k. Using Chernoff’s bound, we have:

Pr
[
r′i >

r
4k

(s/2n)k
]
≤ exp

(
− r
20k

(s/2n)k
)
≤ δ

2k

and similarly Pr
[
r′i < 3r

4k(s/2n)
k] ≤ δ

2k . So, using the union bound we get the required.

Theorem C.11. Fix δ ∈ (0, 1/2), ε ∈ (0, 1/2), and assume we choose:

• s ≥ α(k)1
log(1/δ)

ε2 .

• r =
⌈
α(k)2 (n/s)k log (1/δ)

⌉
• m ≥ α(k)3

( s
k−1
)
n2 log(nr/δ) log(1/δ)

• T ≥ α(k)4
log(1/δ) log(T)

ε2

for some constants α(k)1 , α(k)2 , α(k)3 , α(k)4 . Then, with probability at least 1 − δ over the choice of sample

size and initialization, gradient descent returns after T iterations a function h s.t. LD(h) ≤ ε.

Proof. Choose r =
⌈
20k(2n/s)k log

(2k
δ
)⌉
.
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• From Lemma C.10, with probability at least 1− δwe get an r′-good init with r′ = r
2k(s/2n)

k

and notice that 10 log(2k/δ) ≤ r′ ≤ 20 log(2k/δ).

• Let η = 1
2k
∣∣Ck,s

∣∣−1 ≥ κk
2k

√( s
k−1
)
and

τ =
ε

40Bknκk
√( s

k−1
)
log(2k/δ)

≤ min
(

ε
4Bkkr′nη

,
1

16ηkn

)

Choosing

– m ≥ 4·402B2kκkn
2( s

k−1) log(2k/δ)
2 log(4nr/δ)

ε2 ≥ 4 log(4nr/δ)
τ2

– s ≥ 80kB2k log(2k/δ)
ε2 ≥ 4kr′B2k

ε2

from Lemma C.6, the conditions for Lemma C.9 are satisfied with

1. B = Bk.

2. ‖ψ‖∞,2 ≤
√
8kr′ ≤ 4

√
10k log(2k/δ)

3.
∥∥ψ − φ(1)

∥∥
∞,2 ≤ 4kr′nητ ≤ ε

Bk

• Choosing

– T
log(T) ≥

100
(
4
√

10k log(2k/δ)+B−1
)2

ε2 ≥ 100
ε2

(
‖ψ‖∞,2 + B−1

)2
– m ≥ (16

√
2B
√

10k log(2k/δ)+1)2 log(2/δ)
ε2 ≥ (4

√
2B∥ψ∥∞,2+1)

2 log(2/δ)
ε2

using Lemma C.9 we get w.p. at least 1− 2δwe have LD(h) ≤ 7ε.
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C.2.3 Feature selection with an under-sparse initialization and a narrow network

Fix some subset S ⊆
(n
k
)
to be the true parity function. Let k be even.

We train the following network:

fW,b,u,β(x) =
r∑

i=1
uiσ (〈wi,x〉+ bi) + β.

We initialize the network as follows:

• Randomly initializew1, . . . ,wr/2 ∈ {ε, 1}n s.t. s coordinates have weight 1 and rest have

weight ε < 1
(n−s) , with a uniform distribution over all

(n
s
)
subsets.

• Randomly initialize b1, . . . , br/2 ∼
{
−ε k−12k ,−ε

k−3
2k , . . . ,−ε 1

2k , ε
1
2k , . . . , ε

k−3
2k , ε k−12k

}
.

• Randomly initialize u1, . . . , ur/2 ∈ {±1} uniformly at random.

• Initializewr/2+1, . . . ,wr, br/2+1, . . . , br s.t. wi = wi−r/2 and bi = bi−r/2 (symmetric

initialization).

• Initialize ur/2+1, . . . , ur s.t. ui = −ui−r/2.

• Initialize β = 0

Similar to the over-sparse case, we consider hinge-loss. We consider one-step of gradient descent

on a sample S with ℓ2 regularization (weight decay):

θ(1) = (1− λ)θ(0) − η trunc(∇LS(fθ(0)), γ)

with learning rate η, truncation parameter γ, and the weight decay λ chosen differently for each

layer and separately for the weights and biases. Note that truncation just zeros out gradients with

magnitude≤ γ.
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Majority andHalf. We will make use of two Boolean functions: (1) Majority, and (2) Half

(derivative of Majority). For input x ∈ {±1}n, we define

Maj(x) = sign

( n∑
i=1

xi

)

where sign(a) = 1 is a > 0 else−1. The derivative of the Majority function is denoted by

DnMajn = Half and is defined for input x ∈ {±1}n−1 as:

Half(x) = 1

( n∑
i=1

xi = 0

)
.

The corresponding Fourier coefficients corresponding to set S are denoted by M̂ajn(S) and Ĥalfn−1(S).

Note that both functions are permutation invariant, so the Fourier coefficients only depend on the

size of the set.

Lemma C.12 (O’Donnell (2014)). For any integers m ≥ j, we have

Ĥalf2m(2j) = M̂aj2m+1(2j+ 1) = (−1)j
(m
j
)(2m

2j
) (2mm )
22m

.

Population gradients at initialization. Consider a fixed weightw with the set of 1

weights indicated by S′ ⊆ S. We first start with computing the population gradients for this neu-

ron (hw(x) = σ(〈w,x〉) be a single ReLU neuron where σ(x) = max{x, 0}) at initialization for

varying S ∩ S′ = S̄ and parity and non-parity variables.

Lemma C.13 (Population gradient at initialization for parity variables). Assuming s < k with s, k

even, for i ∈ S, we have

E
x∼{±1}n

[
∂

∂wi
hw(x) · χS(x)

]
=

1
2
Ĥalfs(S̄ \ {i})M̂ajn−s(S \ (S̄ ∪ {i})).
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Proof. For i ∈ S, we have

E
x∼{±1}n

[
∂

∂wi
hw(x) · χS(x)

]
= E

x∼{±1}n

[
σ′(〈w,x〉) · xi · χS(x)

]
Since i ∈ S:

= E
x∼{±1}n

 1I{∑
j∈S′ xj+ε

∑
j̸∈S′ xj>0

} χS\{i}(x)


Splitting based on value of
∑

j∈S′ xj:

= E
x∼{±1}n

 1I{∑
j∈S′ xj=0

} 1I{∑
j̸∈S′ xj>0

} χS\{i}(x)
+ E

x∼{±1}n

 1I{∑
j∈S′ xj>0

} 1I{∑
j∈S′ xj+ε

∑
j̸∈S′ xj>0

} χS\{i}(x)


Using the fact that
∣∣∣ε∑j ̸∈S′ xj

∣∣∣ ≤ (n− s)ε < 1:

= E
x∼{±1}n

 1I{∑
j∈S′ xj=0

} 1I{∑
j̸∈S′ xj≥0

} χS\{i}(x)
+ E

x∼{±1}n

 1I{∑
j∈S′ xj>0

} χS\{i}(x)


Splitting between variables in S′ and outside S′:

= E
x∼{±1}n

 1I{∑
j∈S′ xj=0

} χS̄\{i}(x)
 E

x∼{±1}n

 1I{∑
j̸∈S′ xj≥0

} χS\(S̄∪{i})(x)
+ E

x∼{±1}n

 1I{∑
j∈S′ xj>0

} χS\{i}(x)
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Replacing indicators with Maj and Half appropriately:

= E
x∼{±1}n

[
Halfs(xS′)χS̄\{i}(x)

]
E

x∼{±1}n

[
1
2
(
Majn−s(x[n]\S′) + 1

)
χS\(S̄∪{i})(x)

]
+ E

x∼{±1}n

[
1
2
(
Majs(xS′) + 1

)
χS̄\{i}(x)

]
E

x∼{±1}n−s

[
χS\(S̄∪{i})(x)

]

Replacing indicators with Fourier coefficients appropriately:

=
1
2
Ĥalfs(S̄ \ {i})

(
M̂ajn−s(S \ (S̄ ∪ {i})) + 1I

{S⊆S̄∪{i}}

)
+

1
2

(
M̂ajs(S̄ \ {i}) + 1I

{S̄\{i}=φ}

)
1I

{S⊆S̄∪{i}}

=
1
2
Ĥalfs(S̄ \ {i})M̂ajn−s(S \ (S̄ ∪ {i})) +

1
2

(
M̂ajs(S̄ \ {i}) + 1I

{S̄\{i}=φ}
+Ĥalfs(S̄ \ {i})

)
1I

{S⊆S̄∪{i}}

Since k, s are even and k < s, |S̄ ∪ {i}| ≤ s+ 1 < k = |S| therefore 1I{S⊆S̄∪{i}} = 0:

=
1
2
Ĥalfs(S̄ \ {i})M̂ajn−s(S \ (S̄ ∪ {i})).

This gives us the desired result.

Lemma C.14 (Population gradient at initialization for non-parity variables). Assuming s < k with

s, k even, for i 6∈ S, we have

E
x∼{±1}n

[
∂

∂wi
hw(x) · χS(x)

]
=

1
2
Ĥalfs(S̄ ∪ (S′ ∩ {i}))M̂ajn−s((S ∪ {i}) \ S

′).
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Proof. For i 6∈ S, using similar calculations as in the proof of Lemma C.13, we have

E
x∼{±1}n

[
∂

∂wi
hw(x) · χS(x)

]
= E

x∼{±1}n

[
σ′(〈w,x〉) · xi · χS(x)

]
= E

x∼{±1}n

 1I{∑
j∈S′ xj+ε

∑
j̸∈S′ xj>0

} χS∪{i}(x)


= E
x∼{±1}n

 1I{∑
j∈S′ xj=0

} 1I{∑
j̸∈S′ xj>0

} χS∪{i}(x)
+ E

x∼{±1}n

 1I{∑
j∈S′ xj>0

} χS∪{i}(x)


= E
x∼{±1}n

 1I{∑
j∈S′ xj=0

} χS̄∪(S′∩{i})(x)
 E

x∼{±1}n

 1I{∑
j ̸∈S′ xj>0

} χ(S∪{i})\S′(x)


+ E
x∼{±1}n

 1I{∑
j∈S′ xj>0

} χS∪{i}(x)


= E
x∼{±1}n

[
Halfs(xS′)χS̄∪(S′∩{i})(x)

]
E

x∼{±1}n

[
1
2
(
Majn−s(x[n]\S′) + 1

)
χ(S∪{i})\S′(x)

]
+ E

x∼{±1}n

[
1
2
(
Majs(xS′) + 1

)
χS̄∪(S′∩{i})(x)

]
E

x∼{±1}n

[
χ(S∪{i})\S′(x)

]
=

1
2
Ĥalfs(S̄ ∪ (S′ ∩ {i}))M̂ajn−s((S ∪ {i}) \ S

′)

+
1
2

(
M̂ajs(S̄ ∪ (S′ ∩ {i})) + 1I

{S̄=φ∧i̸∈S′}
+Ĥalfs(S̄ \ {i})

)
1I

{S∪{i}⊆S′}

Using the fact that |S′| < |S| therefore 1I{S∪{i}⊆S′} = 0:

=
1
2
Ĥalfs(S̄ ∪ (S′ ∩ {i}))M̂ajn−s((S ∪ {i}) \ S

′).

Similar to the over-sparse setting, we say a neuron is good if S′ ⊂ S, that is, if the selected variables

are a subset of the relevant variables. Then we have,
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Lemma C.15 (Population gradient at initialization for good neurons). Assuming s < k with s, k

even, for good neurons, for S̄ = S′ ∩ S, we have

E
x∼{±1}n

[
∂

∂wi
hw(x) · χS(x)

]
=



1
2Ĥalfs(s)M̂ajn−s(k− s− 1) if i ∈ S \ S′,

1
2Ĥalfs(s)M̂ajn−s(k− s+ 1) if i 6∈ S,

0 otherwise.

Proof. Using Lemma C.13 and C.14, we get

1. i ∈ S, i ∈ S′:

E
x∼{±1}n

[
∂

∂wi
hw(x) · χS(x)

]
=

1
2
Ĥalfs(S̄ \ {i})M̂ajn−s(S \ S̄)

2. i ∈ S, i 6∈ S′:

E
x∼{±1}n

[
∂

∂wi
hw(x) · χS(x)

]
=

1
2
Ĥalfs(S̄)M̂ajn−s(S \ (S̄ ∪ {i}))

3. i 6∈ S, i ∈ S′:

E
x∼{±1}n

[
∂

∂wi
hw(x) · χS(x)

]
=

1
2
Ĥalfs(S̄ ∪ {i})M̂ajn−s(S \ S̄)

4. i 6∈ S, i 6∈ S′:

E
x∼{±1}n

[
∂

∂wi
hw(x) · χS(x)

]
=

1
2
Ĥalfs(S̄)M̂ajn−s((S \ S̄) ∪ {i})

Since S′ ⊆ S, the arguments to the Ĥalf for (1) and (3) are odd. The corresponding Fourier coeffi-

cients for odd sets for Half are 0 (see O’Donnell (2014)), thus we have the desired result.
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Theorem C.16 (Formal version of Theorem 6.5). Fix s, k, ε such that s < k, ε > 0. Then for network

width r ≥ Ω((n/k)s), the initialization scheme proposed here guarantees that for every (n, k)-parity

distributionD, with probability at least 0.99 over the choice of sample and initialization, after one step

of batch gradient descent with sample size m = O((n/k)k−s−1) and appropriate choice of learning

rate, there is a subnetwork in the one-layer ReLUMLP that has at least 1
2 − ε correlation with the

parity function.

Proof. To compute the parity function, we need to have k neurons which identify the correct coor-

dinates and have the appropriate biases. In order to identify the correct coordinates, we will focus

only on good neurons, and on population gradient. We will then argue by standard concentration

arguments that this holds from samples.

Let us consider a good neuron with S′ ⊆ S. Firstly note that the scale of the bias is set such

that it does not affect the gradient, Since it is at most ε/2. Thus we can assume the no bias case for

gradient computation. For all i ∈ S \ S′, that is, the set of relevant variables that are not selected

in the initialization, let ξS\S′ denote the gradient at initialization, and for all i 6∈ S, that is, the set

of irrelevant variables, let ξ[n]\S denote the gradient at initialization. Then using Lemma C.15 and

Lemma C.12, we have ∣∣∣ξS\S′∣∣∣∣∣∣ξ[n]\S∣∣∣ =
n− s

k− s− 1
> 1.

With η and γ being 0 on the bias terms and the second layer, η = − ε
2k|ξS\S′ |

for the first layer

weights, λ = 1 − ε
2k and γ =

∣∣∣ξ[n]\S∣∣∣ , one step of truncated population gradient descent gives
us, for all i ∈ S, wi =

ε
2k and for all i 6∈ S, |wi| = ε2

k . Since our initialization has two copies of the

same neuron with second layer weights 1 and−1, one of them will have the gradient in the correct

direction, ensuring the above, in particular, the one with the weight being sign(ξS\S′). Since ε can

be set to be arbitrarily small, terms with ε2 can be ignored in comparison to terms with ε. Thus the

non-parity coefficients do not affect the output of the function and we get the appropriate parity
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coefficients (scaled by ε/2k). To extend these guarantees to the batch gradient setting, we need to

compute gradients to precision

τ =
∣∣∣ξ[n]\S∣∣∣ /2 = cs(n− s)−

k−s−1
2

for some constant cs dependent only on s. This implies a sample complexity ofO(c2s (n − s)k−s−1)

using standard Chernoff bound. As for the width, we need to ensure that we have the required

number of good neurons with appropriate bias. The probability of a randomly initialized neuron

to be good is (k
s
)(n
s
) = Θ

((
k
n

)s)
.

The probability of choosing the appropriate bias is 1/(k+ 1). Thus to be able to choose k+ 1 good

neurons with correct biases, we need widthO(k2(n/k)s).

We provide some additional remarks on the proof of Theorem 6.5:

• The sample complexity compared to the dense initialization studied by Barak et al. (2022)

improves by a factor of ns, at the cost of a higher width by a factor of ns.

• We conjecture that Theorem 6.5 can be strengthened to an end-to-end guarantee for the full

network, like Theorem 6.4. The technical challenge lies in analyzing how weight decay uni-

formly prunes the large irrelevant coordinates, without decaying the good subnetwork. We

believe that this occurs robustly (from the experiments on sparse initialization), but requires

a more refined analysis of the optimization trajectory.
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Figure C.1: Full results for the sweep over dataset sizes and MLP widths. Each point represents 50 independent training
runs of a 2‐layer ReLU MLP on the offline sparse parity problem (input dimension n, parity degree k, initialization
scheme, width r, dataset sizem). All other algorithmic choices (learning rate η = 0.1, weight decay λ = 0.01, batch
size B = 32, number of training iterations T = 105) are kept the same. We note the following: (1) A success frontier,
where wide networks can learn at small sample sizesm � BT (far outside online regime); (2)Monotonic benefit
of width: overparameterization does not worsen the failure mode of overfitting in this setting, and amplifies success
probabilities; (3) Benefit of sparse axis‐aligned initialization: for sufficiently large n where default initialization no longer
works, sparse initialization scheme enlarges the feasible regime; (4) Non‐monotonic effects of dataset size: there are
unpredictable failures as we varym (horizontal slices of these plots).
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C.3 Full experimental results

C.3.1 Full sweeps over dataset size and width

In our main set of large-scale synthetic experiments, we train a large number of 2-layer MLPs to

solve various (n, k)-sparse parity problems, fromm samples. The full set of hyperparameters is listed

below:

• Problem instance sizes: n ∈ {50, 100, 150, . . . , 300}, k ∈ {3, 4}. Note that Barak et al.

(2022) investigate empirical computational time scaling curves for larger k (up to 8) in the

online (m =∞) setting. We are able to observe convergence for larger k in the offline setting,

but we omit these results from the systematic grid sweep (the feasible regime is too small in

terms of n).

• Dataset size: m ∈ {100, 200, 300, 600, 1000, 2000, 3000, . . . , 600000, 1000000}. We also

include runs in the online regime (rightmost columns in Figure C.1), which correspond to

the regime studied by Barak et al. (2022).

• Network width: r ∈ {10, 30, 100, 300, . . . , 10000, 30000, 100000}.

• Initialization scheme: PyTorch default (uniform on the interval [−1/
√
n, 1/
√
n]), and ran-

dom 2-sparse rows. In coarser-grained hyperparameter searches, we found 2 to be the op-

timal sparsity constant for large-width (≥ 1000) regimes studied in this paper; we do not

fully understand why this is the case. We also keep the PyTorch default initialization scheme

(uniform on the width-dependent interval [−1/
√
r, 1/
√
r]) for the second layer, and use

default-initialized biases.

At each point in this hyperparameter space, we conduct 50 training runs, and record the success

probability, defined as the probability of achieving test error≤ 10% on a held-out sample of size
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104 within T = 105 training iterations. The hyperparameters for SGD, selected via coarse-grained

hyperparameter search to optimize for convergence time in the n = 200, k = 3, r = 10000 setting,

are as follows: minibatch size B = 32; learning rate η = 0.1; weight decay λ = 0.01.

Figure C.1 summarizes all of our runs, and overviews all of the findings (1) through (4) enumer-

ated in the main paper. We go into more detail below:

(1) A “success frontier”: large width can compensate for small datasets.We observe conver-

gence and perfect generalization whenm � nk. In such regimes, which are far outside the

online setting considered by Barak et al. (2022), high-probability sample-efficient learning

is enabled by large width. Note that neither our theoretical or empirical results have suffi-

cient granularity to predict or measure the precise way the smallest feasible sample sizem

scales with the other size parameters (like n, k, r). The theoretical upper bounds show that if

r = Ω(nk), idealized algorithms (modified for tractability of analysis) can obtainO(poly(n))

or evenO(log(n)) sample complexity, and smaller r can yield milder reductions of the expo-

nent.

(2) Width is monotonically beneficial, and buys data, time, and luck. Despite the capacity

of wider neural networks to overfit larger datasets, we find that there aremonotonic sample-

efficiency benefits to increasing network width, in all of the hyperparameter settings consid-

ered in the grid sweep. This can be quickly quantitatively confirmed by starting at any point

in Figure C.1, and noting that success probabilities only increase* going upwards (increasing

r, keeping all other parameters equal). Along some of these vertical slices, we observe that

transitions from 0% to 100% are present: at these corresponding dataset sizesm, large width

makes sample-efficient learning possible. Figure 6.2 (center) shows this in greater detail, by

choosing a denser grid of sample sizesm near the empirical statistical limit.

*Small exceptions (such as 98% → 96% for n = 100, k = 4,m = 2000) are all within the standard error
margins of Bernoulli confidence intervals.
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(3) Sparse axis-aligned initialization buys data, time, and luck. Used in conjunction with

a wide network, we observe that a sparse, axis-aligned initialization scheme yields strong

improvements on all of these axes. This can be seen by comparing the pairs of subplots in

columns 1 vs. 3 and 2 vs. 4 in Figure C.1. We found that s = 2 (i.e. initialize every hidden-

layer neuron with a random 2-hot weight vector) works best for the settings considered in

this study.

(4) Intriguing effects of dataset size. Unlike the monotonicity along vertical slices in Fig-

ure C.1, some of the horizontal slices exhibit non-monotonic success probabilities. Namely,

asm increases, keeping all else the same, the network enters and exits a first feasible regime;

then, at large enough sample sizes (including the online setting), learning is observed to suc-

ceed again. Sparse initialization reduces this counterintuitive behavior, but not entirely (see,

e.g., the n = 200, k = 3 cell). We do not attempt to explain this phenomenon; however,

we found in preliminary investigations that the locations of the transitions are sensitive to

the choice of weight decay hyperparameter. Figure 6.2 (right) shows this in greater detail,

plotting median convergence times (as defined above) instead of success probabilities.

C.3.2 Lottery ticket subnetworks

Our theoretical analysis of sparse networks and experimental findings suggest that width provides a

form of parallelization: wider networks have a higher probability of containing lucky neurons which

have sufficient Fourier gaps at initialization to learn from the dataset. In Figure C.2 we perform

an experiment in the style of Frankle & Carbin (2018), showing that indeed the neurons which

end up being important in a wide sparsely-initialized network form an unusually lucky ‘winning

ticket’ subnetwork. When we rewind the weights of this subnetwork to initialization, its test error

starts out poor, but when we train just this subnetwork from initialization its performance quickly
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0 5000 10000 15000 20000 25000 30000
Step

0.0

0.1

0.2

0.3

0.4

0.5
Er

ro
r

Training the full network

0 5000 10000 15000 20000 25000 30000
Step

Training the top-5 subnetwork from
 initialization with ten different SGD seeds

0 5000 10000 15000 20000 25000 30000
Step

Training ten randomly initialized
 width-5 networks

Figure C.2: (Lottery tickets) Left: Training a width‐100 MLP on the (n=50, k=5)‐online sparse parity task, where each
hidden neuron initialized with 2 non‐zero incoming weights. Center: We prune all but the top 5 neurons by weight norm
at the end of training; rewind weights to the original initialization, and retrain with various SGD random seeds. Right:
The same as Center, but the weights are randomly reinitialized in each run.

improves, unlike the large majority of randomly initialized subnetworks of the same size. For this

experiment, batch size=32 and learning rate=0.1.

C.3.3 Training wide & sparsely-initializedMLPs on natural tabular data

As a preliminary investigation of whether our findings translate well to realistic settings, we con-

duct experiments on the tabular benchmark curated by Grinsztajn et al. (2022). For simplicity, we

use all 16 numerical classification tasks from the benchmark. These datasets originate from diverse

domains such as health care, finance, and experimental physics. Our main comparison is between

MLPs (with algorithmic choices inspired by our sparse parity findings) and random forests Breiman

(2001). We chose random forests as a baseline because they are known to achieve competitive per-

formance with little tuning. Figure C.3 summarizes our results, in which we find that wide and

sparsely-initializedMLPs improve sample efficiency on small tabular datasets. We describe these

experiments in full detail below.
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Figure C.3: Full results of our tabular data experiments (following Grinsztajn et al. (2022)), varying MLP width r, sample
sizem (via downsampling the training data), and initialization sparsity. Both width and sparsity tend to improve general‐
ization, especially for small datasets. See Tables C.1 and C.2 for further details.
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Data preprocessing. We standardize the dataset, centering each feature to have mean 0 and

normalizing each feature to have standard deviation 1.* For each task, we set aside 10% of the data

for the test set, and downsample varying fractions of the remaining data to form a training set. We

vary the downsampling fraction on an exponential grid: {1, 0.6, 0.3, 0.2, 0.1, 0.06, 0.03, 0.02, 0.01,

0.006, 0.003, 0.002, 0.001, 0.0006, 0.0003, 0.0002, 0.0001}. In each of 100 i.i.d. trials for each set-

ting, we re-randomize the validation split as well as the downsampled training set.

Algorithms. MLPs are trained using the same architectural choices noted in Section C.3.1,

except the hyperparameters noted below. We use the scikit-learn Pedregosa et al. (2011) Random-

ForestClassifier. Hyperparameters not mentioned are set to library defaults.

Hyperparameter choices forMLPs.

• Width r: {100, 300, 1000, 3000, 10000, 30000}. For deeper networks, the hidden layers are

set to r× r.

• Depth (number of hidden layers): {1, 2, 3}. In all of these settings, depth-1 networks are

nearly uniformly outperformed by deeper ones of the same width.

• Sparsity of initialization: s ∈ {2, 4}, and also dense (uniform) initialization. 4-sparse initial-

ization is nearly uniformly outperformed by 2-sparse (in agreement with our experiments on

sparse parity).

• Weight decay: {0, 0.01}. In these settings, this hyperparameter had a minimal effect.

• Learning rate: 10−3

• Batch size: 256

*Note that Grinsztajn et al. (2022) instead transform each feature such that its empirical marginal distri-
bution approximates a standard Gaussian.
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• Training epochs: 100

Hyperparameter choices for RandomForestClassifier.

• max_depth: {−1, 2, 3, 4, 10}

• max_features: {1, 2, 3, 4, sqrt,None}

• n_estimators: {10, 100, 1000}

Larger widths. For all of the tasks except 2 and 9 (since these are significantly larger datasets),

we include extra runs with even larger networks: depth-2 MLPs with non-uniform width (i.e. se-

quence of hidden layer dimensions) {(100000, 10000), (10000, 100000)}.

Plots in Figure C.3. For clarity of presentation, in the plots where we vary MLP width and

initialization sparsity, we fix depth to 3 and sparsity level s = 2. Qualitative trends are similar for

other settings. The gold “best MLP” curves show the best median-of-100 validation losses across all

architectures in the search space.

Comparisonwith full-data baselines. To ensure that our baseline algorithm choices for

MLPs and random forests are reasonable, we present a comparison with the results of Grinsztajn

et al. (2022) (who performed extensive hyperparameter search) on the full datasets. These are shown

as the dotted lines in Figure C.3, as well as Table C.2.

Results. We note the following findings from the results in Figure C.3 and Table C.2:

(2T) Wide networks resist overfitting on small tabular datasets. Like in the synthetic exper-

iments, width yields monotonic end-to-end benefits for sample-efficient learning on these

datasets. This suggests that the “parallel search + pruning” mechanisms analyzed in our
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Task OpenML identifier # features # examples
1 credit 11 16714
2 electricity 8 38474
3 covertype 11 566602
4 pol 27 10082
5 house_16H 17 13488
6 MagicTelescope 11 13376
7 bank-marketing 8 10578
8 MiniBooNE 51 72998
9 Higgs 25 940160
10 eye_movements 21 7608
11 Diabetes130US 8 71090
12 jannis 55 57580
13 default-of-credit-card-clients 21 13272
14 Bioresponse 420 3434
15 california 9 20634
16 heloc 23 10000

Table C.1: Metadata for the 16 tabular classification benchmarks, curated by Grinsztajn et al. (2022) (January 2023
version, benchmark suite ID 337) and publicly available via OpenML.

paper are empirically at play in these settings, and that these networks’ capacity to overfit

does not preclude nontrivial feature learning and generalization. These comparisons can

be seen by comparing the colored curves (which represent depths 2 and 3) within each sub-

plot in Figure C.3. In some (but not all) cases, these MLPs perform competitively with

hyperparameter-tuned random forest classifiers.

(3T) Sparse axis-aligned initialization sometimes improves end-to-end performance. These

comparisons can be seen by comparing vertically adjacent sparse vs. dense subplots in Fig-

ure C.3. This effect is especially pronounced on datasets which are downsampled to be

orders of magnitude smaller. We believe that this class of drop-in replacements for standard

initialization merits further investigation, and may contribute to closing the remaining per-

formance gap between deep learning and tree ensembles on small tabular datasets.
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Task Best MLP Best RF (Grinsztajn et al., 2022)
full 10% 1% full 10% 1% MLP RF Best model

1 24.5 27.8 34.2 22.0 22.9 24.8 22.9 23.6 22.5 (GBT)
2 18.9 23.2 25.1 15.4 18.0 23.0 23.6 13.7 12.8 (XGB)
3 6.3 13.7 23.2 19.1 18.9 21.4 21.6 17.1 17.1 (RF)
4 1.4 4.2 12.3 2.1 4.0 10.0 6.3 1.9 1.7 (XGB)
5 12.7 14.9 20.0 12.4 13.9 17.4 12.1 12.0 11.1 (XGB)
6 14.6 16.5 23.1 14.8 16.8 21.9 14.6 14.5 13.9 (FTT)
7 20.2 21.8 25.9 19.7 21.1 25.2 20.9 20.1 19.5 (GBT)
8 7.2 10.0 14.4 7.7 8.6 10.5 6.7 7.3 6.2 (XGB)
9 26.1 28.7 33.7 28.5 28.7 29.9 31.4 29.1 28.6 (XGB)
10 39.9 43.9 46.3 35.8 43.0 47.8 41.8 34.8 33.4 (XGB)
11 39.1 39.3 40.7 39.1 39.4 40.6 39.5 39.5 39.4 (XGB)
12 23.0 26.1 28.7 22.0 23.8 27.2 25.5 22.7 22.0 (XGB)
13 28.7 30.1 33.5 28.2 29.2 31.9 28.9 28.0 28.0 (RF)
14 19.5 28.9 37.6 22.2 29.2 39.8 23.4 20.5 20.5 (RF)
15 12.2 14.8 20.8 11.2 13.8 18.4 12.9 10.6 9.7 (XGB)
16 27.1 28.0 31.3 27.8 28.6 31.0 27.8 28.1 27.4 (ResNet)

Table C.2: Numerical comparisons for the tabular data experiments, to accompany Figure C.3. We report the median
test error (%) over 100 i.i.d. training runs of MLPs and random forests. The 3 subcolumns in each group denote models
trained on the full dataset and their {10%, 1%} downsampled counterparts. For all of these results, bootstrap 95%
confidence intervals have width< 2%. We observe that wide and/or sparsely‐initialized MLPs are competitive with
tree‐based methods. In the rightmost 3 columns, we provide test errors for the same tasks, reported by (Grinsztajn
et al., 2022) (GBT = gradient boosted tree, XGB = XGBoost, FTT = Feature Tokenizer + Transformer (Gorishniy et al.,
2021)). Note that our cross‐validation protocol differs slightly (to handle variance incurred by downsampling), which
may explain performance discrepancies. We include these only to illustrate that our full‐data accuracies are commensu‐
rate with those in prior works focused exclusively on benchmarking models for tabular data.
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C.3.4 Software, compute infrastructure, and resource costs

GPU-accelerated training and evaluation pipelines were implemented in PyTorch (Paszke et al.,

2019). Each training run was performed on one GPU in an internal cluster, with NVIDIA P40,

P100, V100, and RTXA6000 GPUs. A single T = 105 training run took 10 seconds on average

(with early termination for the vast majority of grid sweeps); across all of the results in this paper,

around 2 × 105 training runs were performed, in a total of 600 GPU-hours. Note that the precise

evaluation of test error (at batch size 104) constitutes a significant portion of the computational cost;

this necessitated mindful GPU parallelization.
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D
Feature Emergence

D.1 Further RelatedWork

Two closely related works to ours are Gromov (2023) and Bronstein et al. (2022). Gromov (2023)

provides an analytic construction of various two-layer quadratic networks that can solve the mod-

ular addition task. The construction used in the proof of Theorem 7.7 is a special case of the given

scheme. Bronstein et al. (2022)shows that all max margin solutions of a one-hidden-layer ReLU net-
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work (with fixed top weights) trained on read-once DNFs have neurons which align with clauses.

However, the proof techniques are significantly different. For any given neural network not satisfy-

ing the desired conditions ((neurons aligning with the clauses), Bronstein et al. (2022) construct a

perturbed network satisfying the conditions which exhibits a better margin. We rely on the max-min

duality for certifying a maximummargin solution, as shown in Section 7.3.3.

Margin maximization. One branch of results on margin maximization in neural networks in-

volve proving that the optimization of neural networks leads to an implicit bias towards margin

maximization. Soudry et al. (2018) show that logistic regression converges in direction to the max

margin classifier. Wei et al. (2019a) prove that the global optimum of weakly-regularized cross-

entropy loss on homogeneous networks reaches the max margin. Similarly, Lyu & Li (2019) and

Ji & Telgarsky (2020) show that in homogeneous networks, even in the absence of explicit regular-

ization, if loss becomes low enough then the weights will tend in direction to a KKT point of the

max margin optimization objective. This implies margin maximization in deep linear networks, al-

though it is not necessarily the global max margin (Vardi et al., 2022). Chizat & Bach (2020) prove

that infinite-width 2-homogeneous networks with mean field initialization will converge to the

global max margin solution. In a different setting, Lyu et al. (2021) and Frei et al. (2022b) show that

the margin is maximized when training leaky-ReLU one hidden layer networks with gradient flow

on linearly separable data, given certain assumptions on the input (eg. presence of symmetries, near-

orthogonality). For more on studying inductive biases in neural networks, refer to Vardi (2023).

Numerous other works do not focus on neural network dynamics and instead analyze proper-

ties of solutions with good margins (Bartlett, 1996). For instance, Frei et al. (2023) show that the

maximummargin KKT points have “benign overfitting” properties. The works by Lyu et al. (2021),

Morwani et al. (2023a) and Frei et al. (2023) show that max margin implies linear decision bound-

ary for solutions. Gunasekar et al. (2018) show that under certain assumptions, gradient descent on

depth-two linear convolutional networks (with weight-sharing in first layer) converges not to the
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standard L2 max margin, but to the global max margin with respect to the L1 norm of the Fourier

transform of the predictor. Our work follows a similar vein, in which we characterize max margin

features in our setting and relate this to trained networks via results fromWei et al. (2019a).

Training on algebraic tasks and mechanistic interpretability. Studying neural networks

trained on algebraic tasks has offered insights into their training dynamics and inductive biases,

with the simpler setting lending a greater ease of understanding. One such example is the task of

modular addition, which was studied in Power et al. (2021) in their study of grokking, leading to

multiple follow-up works (Liu et al., 2022b, 2023). Another example is the problem of learning par-

ities for neural networks, which has been investigated in numerous works (Daniely &Malach, 2020;

Zhenmei et al., 2022; Frei et al., 2022a; Barak et al., 2022; Edelman et al., 2024a). Other mathemat-

ical tasks like learning addition have been used to investigate whether models possess algorithmic

reasoning capabilities (Saxton et al., 2018; Hendrycks et al., 2021; Lewkowycz et al., 2022).

The area of mechanistic interpretability aims to understand the internal representations of in-

dividual neural networks by analyzing its weights. This form of analysis has been applied to under-

stand the motifs and features of neurons in circuits—particular subsets of a neural network— in

computer vision models (Olah et al., 2020; Cammarata et al., 2020) and more recently in language

models (Elhage et al., 2021; Olsson et al., 2022). However, the ability to fully reverse engineer a

neural network is extremely difficult for most tasks and architectures. Some work in this area has

shifted towards finding small, toy models that are easier to interpret, and employing labor inten-

sive approaches to reverse-engineering specific features and circuits in detail(Elhage et al., 2022). In

Nanda et al. (2023), the authors manage to fully interpret how one-layer transformers implement

modular addition and use this knowledge to define progress measures that precede the grokking

phase transition which was previously observed to occur for this task (Power et al., 2021). Chughtai

et al. (2023) extends this analysis to learning composition for various finite groups, and identifies

analogous results and progress measures. In this work, we show that these empirical findings can be
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analytically explained via max margin analysis, due to the implicit bias of gradient descent towards

margin maximization.

D.2 Experimental details

In this section, we will provide the hyperparameter settings for various experiments in the paper.

D.2.1 Cyclic Group

We train a 1-hidden layer network withm = 500, using gradient descent on the task of learning

modular addition for p = 71 for 40000 steps. The initial learning rate of the network is 0.05, which

is doubled on the steps - [1e3, 2e3, 3e3, 4e3, 5e3, 6e3, 7e3, 8e3, 9e3, 10e3]. Thus, the final learning

rate of the network is 51.2. This is done to speed up the training of the network towards the end, as

the gradient of the loss goes down exponentially. For quadratic network, we use a L2,3 regularization

of 1e− 4. For ReLU network, we use a L2 regularization of 1e− 4.

D.2.2 Sparse parity

We train a 1-hidden layer quadratic network withm = 40 on (10, 4)−sparse parity task. It is

trained by gradient descent for 30000 steps with a learning rate of 0.1 and L2,5 regularization of

1e− 3.

D.2.3 General Groups

The hyperparameters for various groups S3, S4, and S5 are provided in subsections below.
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S3

We train a 1-hidden layer quadratic network withm = 30, using gradient descent for 50000 steps,

with a L2,3 regularization of 1e − 7. The initial learning rate is 0.05, which is doubled on the steps -

[200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600, 5000, 10000]. Thus,

the final learning rate is 1638.4. This is done to speed up the training of the network towards the

end, as the gradient of the loss goes down exponentially.

S4

We train a 1-hidden layer quadratic network withm = 200, using gradient descent for 50000 steps,

with a L2,3 regularization of 1e − 7. The initial learning rate is 0.05, which is doubled on the steps -

[200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600, 5000, 10000]. Thus,

the final learning rate is 1638.4. This is done to speed up the training of the network towards the

end, as the gradient of the loss goes down exponentially.

S5

We train a 1-hidden layer quadratic network withm = 2000, using stochastic gradient descent for

75000 steps, with a batch size of 1000 and L2,3 regularization of 1e − 5. The initial learning rate

is 0.05, which is doubled on the steps - [3000, 6000, 9000, 12000, 15000, 18000, 21000, 24000].

Thus, the final learning rate is 12.8. This is done to speed up the training of the network towards the

end, as the gradient of the loss goes down exponentially.

D.3 Additional Experiments

The distribution of neurons of a particular frequency for the modular addition case is shown in

Figure D.1. As can be seen, for both ReLU and quadratic activation, the distribution is close to
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Figure D.1: Final distribution of the neurons corresponding to a particular frequency in (a) ReLU network trained with
L2 regularization and (b) Quadratic network trained with L2,3 regularization. Similar to our construction, the final
distribution across frequencies is close to uniform.

uniform.

Experimental results for other symmetric groups S3 and S4 in Figures D.2 and D.3 respectively.

We observe the same max margin features as stated in Theorem 7.9 and the L2,3 margin approaches

the theoretical max margin that we have predicted.

D.4 Alternative construction

To argue why the problem of finding correctly classifying networks is overdetermined, we present

an alternative construction (which applies to general groups) that does not have an “interesting”

Fourier spectrum or any behavioral similarity to the solutions reached by standard training.

For any function r : [n]2 → [n], there exists a neural network parameterized by θ of the form

considered in Sections 7.4 and 7.6 with 2p2 neurons such that f(θ, (a, b))[c] = 111c=r(a,b) and that

is “dense” in the Fourier spectrum. For each pair (a, b)we use two neurons given by {u, v,w} and

{u′, v′,w′}, where ui = u′i = 111i=a, vi = 111i=b, v′i = −1i=b, wi = 111i=r(a,b)/4and w′
i = −111i=r(a,b)/4.

When adding together the outputs for these two neurons, for an input of (i, j)we get kth logit equal
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Figure D.2: This figure demonstrates the training of a 1‐hidden layer quadratic network on the symmetric group S3
with L2,3 regularization. (a) Evolution of the normalized L2,3 margin of the network with training. It approaches the
theoretical maximum margin that we predict. (b) Distribution of neurons spanned by a given representation. Higher
dimensional representations have more neurons as given by our construction. (c) and (d) Maximum normalized power

is given by max û[i]2∑
j û[j]2

where û[i] refers to the component of weight u along ith representation. Initially, it’s random, but
towards the end of training, all neurons are concentrated in a single representation, as predicted by maximum margin.

to:

1
4
(
(111i=a + 111j=b)

2111k=r(i,j) − (111i=a − 111j=b)
2111k=r(i,j)

)
= 111i=a111j=b111k=r(a,b)

Hence, these two norms help “memorize” the output for (a, b)while not influencing the output for

any other input, so when summing together all these neurons we get an fwith the aforementioned

property. Note that all the vectors used are (up to sign) one-hot encodings and thus have an uniform

norm in the Fourier spectrum. This is to show that Fourier sparsity is not present in any correct
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Figure D.3: This figure demonstrates the training of a 1‐hidden layer quadratic network on the symmetric group S4
with L2,3 regularization. (a) Evolution of the normalized L2,3 margin of the network with training. It approaches the
theoretical maximum margin that we predict. (b) Distribution of neurons spanned by a given representation. Higher
dimensional representations have more neurons as given by our construction. (c) and (d) Maximum normalized power

is given by max û[i]2∑
j û[j]2

where û[i] refers to the component of weight u along ith representation. Initially, it is random,
but towards the end of training, all neurons are concentrated on a single representation, as predicted by the maximum
margin analysis.

classifier.

D.5 Proofs for the Theoretical Approach

For ease of the reader, we will first restate Equations 7.1 and 7.2.

q∗ ∈ argmin
q∈P(D)

E
(x,y)∼q

[g(θ∗, x, y)]
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θ∗ ∈ argmax
θ∈Θ

E
(x,y)∼q∗

[g(θ, x, y)]

Wewill first provide the proof of Lemma 7.2.

Lemma. If a pair (θ∗, q∗) satisfies Equations 7.1 and 7.2, then

θ∗ ∈ argmax
θ∈Θ

min
(x,y)∈D

g(θ, x, y)

Proof. First, using max-min inequality, we have:

max
θ∈Θ

min
(x,y)∈D

g(θ, x, y) = max
θ∈Θ

min
q∈P(D)

E
(x,y)∼q

[g(θ, x, y)] ≤

min
q∈P(D)

max
θ∈Θ

E
(x,y)∼q

[g(θ, x, y)]

On the other hand, it also holds that:

min
q∈P(D)

max
θ∈Θ

E
(x,y)∼q

[g(θ, x, y)] ≤ max
θ∈Θ

E
(x,y)∼q∗

[g(θ, x, y)] =

E
(x,y)∼q∗

[g(θ∗, x, y)] = min
q∈P(D)

E
(x,y)∼q

[g(θ∗, x, y)] ≤

max
θ∈Θ

min
q∈P(D)

E
(x,y)∼q

[g(θ, x, y)]

where the first equality follows from Equation 7.2 and the second follows from Equation 7.1.

Putting these inequalities together it follows that all of the above terms are equal (and, thus we get a

minimax theorem). In particular, θ∗ ∈ argmaxθ∈Θmin(x,y)∈D g(θ, x, y) as desired.

D.5.1 Binary Classification

Now, we will provide the proof of Lemma 7.3.

Lemma. Let Θ = {θ : ‖θ‖a,b ≤ 1} and Θ∗
q = argmaxθ∈Θ E(x,y)∼q [g(θ, x, y)]. Similarly, let
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Ω = {ω : ‖ω‖a ≤ 1} and Ω∗
q = argmaxω∈Ω E(x,y)∼q [ψ(ω, x, y)]. Then, for binary classification,

the following holds:

• Single neuron optimization: Any θ ∈ Θ∗
q has directional support only on Ω∗

q .

• Using multiple neurons: If b = ν and ω∗1 , ..., ω∗m ∈ Ω∗
q , then θ = {λiω∗i }mi=1 with∑

λνi = 1, λi ≥ 0 belongs to Θ∗
q .

Proof. Let γ = max
ω∈Ω

E
(x,y)∼q∗

[ψ(ω, x, y)] and take any θ = {ωi}mi=1. Then:

E
(x,y)∼q∗

[g(θ, x, y)] = E
(x,y)∼q∗

[ m∑
i=1

ψ(ωi)

]
=

m∑
i=1
‖ωi‖νa E

(x,y)∼q∗

[
ψ
(

ωi
‖ωi‖a

)]
≤

γ
m∑
i=1
‖ωi‖νa ≤ γ max

w∈Rm

∥w∥b≤1

‖w‖νν

with equality when ωi
∥ωi∥a ∈ argmax

ω∈Ω
E

(x,y)∼q∗
[ψ(ω, x, y)] for all iwith ωi 6= 0 and the La norms of

ωs respect {‖ωi‖a}mi=1 ∈ argmax
∥w∥b≤1

‖w‖νν. Since there exists equality for this upper bound, these two

criteria define precisely argmax
θ∈Θ

E
(x,y)∼q∗

[g(θ, x, y)]. Hence, we proved the first part of the statement

by first criterion. For the second, note that when b = ν, one can choose any vector of norms for ω

with Lb norm of 1 (since ‖w‖νν = ‖w‖bb ≤ 1), such as λ - this concludes the proof of the second

part.

Remark. Note that the analysis in above proof can be used to compute optimal norms for b 6= ν as

well - however, for any such bwe would not get the same flexibility to build a θ∗ satisfying Equation

7.1. This is the reason behind choosing b = ν.

Now, we will provide the proof of Lemma 7.4.

Lemma. Let Θ = {θ : ‖θ‖a,b ≤ 1} and Θ∗
q = argmaxθ∈Θ E(x,y)∼q [g(θ, x, y)]. Similarly, let Ω =

{ω : ‖ω‖a ≤ 1} and Ω∗
q = argmaxω∈Ω E(x,y)∼q [ψ(ω, x, y)]. For the task of binary classification, if
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there exists {θ∗, q∗} satisfying Equation 7.1 and 7.2, then any θ̂ ∈ argmaxθ∈Θmin(x,y)∈D g(θ, x, y)

satisfies the following:

• θ̂ has directional support only on Ω∗
q∗ .

• For any (x1, y1) ∈ spt(q∗), f(θ̂, x1, y1) − f(θ̂, x1, y′1) = γ∗, where y′1 6= y1, i.e, all points in the

support of q∗ are on the margin for any maximummargin solution.

Proof. Let γ∗ = maxθ∈Θmin(x,y)∈D g(θ, x, y). Then, by Lemma 7.2, γ∗ = E(x,y)∼q∗ g(θ∗, x, y).

Consider any θ̂ ∈ argmaxθ∈Θmin(x,y)∈D g(θ, x, y). This means, that min(x,y)∈D g(θ̂, x, y) = γ∗.

This implies that E(x,y)∼q∗ g(θ̂, x, y) ≥ γ∗. However, by Equation 7.2, maxθ∈Θ E(x,y)∼q∗ g(θ, x, y) =

γ∗. This implies that E(x,y)∼q∗ g(θ̂, x, y) = γ∗. Thus, θ̂ is also a maximizer of E(x,y)∼q∗ g(θ, x, y), and

thus by Lemma 7.3, it only has directional support on Ω∗
q∗ .

Moreover, as E(x,y)∼q∗ g(θ̂, x, y) = γ∗, thus, for any (x1, y1) ∈ spt(q∗), f(θ̂, x1, y1)− f(θ̂, x1, y′1) =

γ∗, where y′1 6= y1.

D.5.2 Multi-Class Classification

We will first provide the proof of Lemma 7.5.

Lemma. Let Θ = {θ : ‖θ‖a,b ≤ 1} and Θ′∗
q = argmaxθ∈Θ E(x,y)∼q [g′(θ, x, y)]. Similarly, let

Ω = {ω : ‖ω‖a ≤ 1} and Ω′∗
q = argmaxω∈Ω E(x,y)∼q [ψ′(ω, x, y)]. Then:

• Single neuron optimization: Any θ ∈ Θ′∗
q has directional support only on Ω′∗

q .

• Using multiple neurons: If b = ν and ω∗1 , ..., ω∗m ∈ Ω′∗
q , then θ = {λiω∗i }mi=1 with∑

λνi = 1, λi ≥ 0 belongs to Θ′∗
q .

Proof. The proof follows the same strategy as the proof of Lemma 7.3 (Section D.5.1), following

the linearity of g′.
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Now, for ease of the reader, we will first restate Equation 7.3 and conditionC.1.

θ∗ ∈ argmax
θ∈Θ

E
(x,y)∼q∗

[
g′(θ, x, y)

]
.

C.1 For any (x, y) ∈ spt(q∗), it holds that g′(θ∗, x, y) = g(θ∗, x, y). This translates to any label

with non-zero weight being one of the incorrect labels where f is maximized: {ℓ ∈ Y \ {y} :

τ(x, y)[ℓ] > 0} ⊆ argmax
ℓ∈Y\{y}

f(θ∗, x)[ℓ].

We will now the provide the proof of Lemma 7.6.

Lemma. Let Θ = {θ : ‖θ‖a,b ≤ 1} and Θ′∗
q = argmaxθ∈Θ E(x,y)∼q [g′(θ, x, y)]. Similarly, let

Ω = {ω : ‖ω‖a ≤ 1} and Ω′∗
q = argmaxω∈Ω E(x,y)∼q [ψ′(ω, x, y)]. If ∃{θ∗, q∗} satisfying

Equations 7.1 and 7.3, andC.1 holds, then:

• θ∗ ∈ argmaxθ∈Θ g(θ, x, y)

• Any θ̂ ∈ argmaxθ∈Θmin(x,y)∈D g(θ, x, y) satisfies the following:

– θ̂ has directional support only on Ω′∗
q∗ .

– For any (x1, y1) ∈ spt(q∗), f(θ̂, x1, y1)−maxy′∈Y\{y1} f(θ̂, x1, y
′
1) = γ∗, i.e, all points in

the support of q∗ are on the margin for any maximummargin solution.

Proof. For the first part, we will show that {θ∗, q∗} satisfy Equations 7.1 and 7.2, and then it fol-

lows from Lemma 7.2. As we have already assumed these satisfy Equation 7.1, we will show that

they satisfy Equation 7.2.
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Note that g′(θ, x, y) ≥ g(θ, x, y). Thus,

E
(x,y)∼q∗

[g(θ∗, x, y)] ≤ max
θ∈Θ

E
(x,y)∼q∗

[g(θ, x, y)]

≤ max
θ∈Θ

E
(x,y)∼q∗

[g′(θ, x, y)]

= E
(x,y)∼q∗

[g′(θ∗, x, y)]

where the second inequality follows as g′ ≥ g and the last equality follows as θ∗ satisfies Equation

7.3. Now, as the pair also satisfiesC.1, thereforeE(x,y)∼q∗ [g(θ∗, x, y)] = E(x,y)∼q∗ [g′(θ∗, x, y)]. This

means, that all inequalities in the above chain must be equality. Thus,

θ∗ ∈ argmax
θ∈Θ

E
(x,y)∼q∗

[g(θ, x, y)].

Thus, the pair {θ∗, q∗} satisfies Equation 7.1 and 7.2, and thus by Lemma 7.2,

θ∗ ∈ argmax
θ∈Θ

g(θ, x, y).

Let γ∗ = maxθ∈Θmin(x,y)∈D g(θ, x, y). Then, γ∗ = E(x,y)∼q∗ g(θ∗, x, y). Consider any θ̂ ∈

argmaxθ∈Θmin(x,y)∈D g(θ, x, y). This means, that min(x,y)∈D g(θ̂, x, y) = γ∗. This implies that

E(x,y)∼q∗ g(θ̂, x, y) ≥ γ∗. Since g′ ≥ g, it then folllows that E(x,y)∼q∗ g′(θ̂, x, y) ≥ γ∗.

However, by Equation 7.3 andC.1, maxθ∈Θ E(x,y)∼q∗ g′(θ, x, y) = E(x,y)∼q∗ g′(θ∗, x, y) =

E(x,y)∼q∗ g(θ∗, x, y) = γ∗. This implies that E(x,y)∼q∗ g′(θ̂, x, y) = γ∗. Thus, θ̂ is also a maximizer of

E(x,y)∼q∗ g′(θ, x, y), and thus by Lemma 7.5, it only has directional support on Ω′∗
q∗ .

Moreover, as min(x,y)∈D g(θ̂, x, y) = γ∗, therefore, E(x,y)∼q∗ g(θ̂, x, y) ≥ γ∗. However, as

g′ ≥ g, therefore, E(x,y)∼q∗ g(θ̂, x, y) ≤ E(x,y)∼q∗ g′(θ̂, x, y) = γ∗, as shown above. Thus,

E(x,y)∼q∗ g(θ̂, x, y) = γ∗. Thus, we have f(θ̂, x1, y1) − maxy′∈Y\{y1} f(θ̂, x1, y
′
1) = g(θ̂, x1, y1) = γ∗
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for any (x1, y1) ∈ spt(q∗).

D.6 Proofs for cyclic groups(Theorem 7.7)

D.6.1 Proof that Equation 7.3 is satisfied

Proof. Let

ηu,v,w(δ) := E
a,b

[
(u(a) + v(b))2w(a+ b− δ)

]
.

Wewish to find the solution to the following mean margin maximization problem:

argmax
u,v,w:∥u∥2+∥v∥2+∥w∥2≤1

(
ηu,v,w(0)− E

δ ̸=0

[
ηu,v,w(δ)

])
=

p
p− 1

(
ηu,v,w(0)− E

δ

[
ηu,v,w(δ)

])
.

(D.1)

First, note that Ec [w(c)] = 0, because shifting the mean of w does not affect the margin. It

follows that

E
a,b

[
(u(a)2w(a+ b− δ)

]
= E

a

[
u(a)2 E

b
[w(a+ b− δ)]

]
= E

a

[
u(a)2 E

b
[w(b)]

]
= 0,

and similarly for the v(b)2 component of η, so we can rewrite (D.1) as

argmax
u,v,w:∥u∥2+∥v∥2+∥w∥2≤1

2p
p− 1

(
η̃u,v,w(0)− E

δ

[
η̃u,v,w(δ)

])
,

where

η̃u,v,w(δ) := E
a,b

[u(a)v(b)w(a+ b− δ)] .

Let ρ := e2πi/p, and let û, v̂, ŵ be the discrete Fourier transforms of u, v, and w respectively. Then
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we have:

η̃u,v,w(δ) = E
a,b

 1
p

p−1∑
j=0

û(j)ρja
 1

p

p−1∑
k=0

v̂(k)ρkb
 1

p

p−1∑
ℓ=0

ŵ(ℓ)ρℓ(a+b−δ)


=

1
p3
∑
j,k,ℓ

û(j)v̂(k)ŵ(ℓ)ρ−ℓδ
(
E
a
ρ(j+ℓ)a

)(
E
b
ρ(k+ℓ)b

)

=
1
p3
∑
j
û(j)v̂(j)ŵ(−j)ρjδ (only terms where j+ ℓ = k+ ℓ = 0 survive)

Hence, we need to maximize

2p
p− 1

(η̃u,v,w(0)− E
δ

[
η̃u,v,w(δ)

]
) (D.2)

=
2p

p− 1

 1
p3
∑
j
û(j)v̂(j)ŵ(−j)− 1

p3
∑
j
û(j)v̂(j)ŵ(−j)(E

δ
ρjδ)


=

2
(p− 1)p2

∑
j̸=0

û(j)v̂(j)ŵ(−j). (D.3)

We have arrived at the crux of why any max margin solution must be sparse in the Fourier do-

main: in order to maximize expression D.3, we must concentrate the mass of û, v̂, and ŵ on the same

frequencies, the fewer the better. We will now work this out carefully. Since u, v,w are real-valued,

we have

û(−j) = û(j), v̂(−j) = v̂(j), ŵ(−j) = ŵ(j)

for all j ∈ Zp. Let θu, θv, θw ∈ [0, 2π)p be the phase components of u, v,w respectively; so, e.g., for

û:

û(j) = |û(j)| exp(iθu(j)).
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Then, for odd p, expression D.3 becomes:

2
(p− 1)p2

(p−1)/2∑
j=1

[
û(j)v̂(j)ŵ(j) + û(j)v̂(j)ŵ(j)

]

=
2

(p− 1)p2

(p−1)/2∑
j=1
|û(j)||̂v(j)||ŵ(j)| [exp(i(θu(j) + θv(j)− θw(j)) + exp(i(−θu(j)− θv(j) + θw(j))]

=
4

(p− 1)p2

(p−1)/2∑
j=1
|û(j)||̂v(j)||ŵ(j)| cos(θu(j) + θv(j)− θw(j)).

Thus, we need to optimize:

max
u,v,w:∥u∥2+∥v∥2+∥w∥2≤1

4
(p− 1)p2

(p−1)/2∑
j=1
|û(j)||̂v(j)||ŵ(j)| cos(θu(j) + θv(j)− θw(j)). (D.4)

By Plancherel’s theorem, the norm constraint is equivalent to

‖û‖2 + ‖v̂‖2 + ‖ŵ‖2 ≤ p,

so the choice of θu(j), θv(j), θw(j) is unconstrained. Therefore, we can (and must) choose them to

satisfy θu(j) + θv(j) = θw(j), so that cos(θu(j) + θv(j) − θw(j)) = 1 is maximized for each j (unless

the amplitude part of the jth term is 0, in which case the phase doesn’t matter). The problem is thus

further reduced to:

max
|û|,|̂v|,|ŵ|:∥û∥2+∥v̂∥2+∥ŵ∥2≤p

4
(p− 1)p2

(p−1)/2∑
j=1
|û(j)||̂v(j)||ŵ(j)|. (D.5)

By the inequality of quadratic and geometric means,

|û(j)||̂v(j)||ŵ(j)| ≤
(
|û(j)|2 + |̂v(j)|2 + |ŵ(j)|2

3

)3/2

. (D.6)
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Let z : {1, . . . , p−12 } → R be defined as z(j) := |û(j)|2 + |̂v(j)|2 + |ŵ(j)|2. Then, since we must

have û(0) = v̂(0) = ŵ(0) = 0 in the optimization above, we can upper-bound expression D.5 by

4
(p− 1)p2

· max
∥z∥1≤ p

2

(p−1)/2∑
j=1

(
z(j)
3

)3/2

≤ 4
33/2(p− 1)p2

· max
∥z∥1≤ p

2

(p−1)/2∑
j=1

z(j)2
1/2

·

(p−1)/2∑
j=1

z(j)

1/2

(Cauchy-Schwartz)

=
23/2

33/2(p− 1)p3/2
· max
∥z∥1≤ p

2

‖z‖2

≤ 23/2

33/2(p− 1)p3/2
· p
2
=

√
2
27
· 1
p1/2(p− 1)

.

The only way to turn inequality D.6 into an equality is to set |û(j)| = |̂v(j)| = |ŵ(j)|, and the

only way to achieve ‖z‖2 =
p
2 is to place all the mass on a single frequency, so the only possible way

to achieve the upper bound is to set

|û(j)| = |̂v(j)| = |ŵ(j)| =


√

p/6 if j = ±ζ

0 otherwise
.

for some frequency ζ ∈ {1, . . . , p−12 }. In this case, we indeed match the upper bound:

4
(p− 1)p2

·
( p
6

)3/2
=

√
2
27
· 1
p1/2(p− 1)

.

so this is the maximummargin.

Putting it all together, and abusing notation by letting θ∗u := θu(ζ), we obtain that all neurons
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maximizing the expected class-weighted margin are of the form (up to scaling):

u(a) =
1
p

p−1∑
j=0

û(j)ρja

=
1
p

[
û(ζ)ρζa + û(−ζ)ρ−ζa

]
=

1
p

[√
p
6
exp(iθ∗u)ρζa +

√
p
6
exp(−iθ∗u)ρ−ζa

]
=

√
2
3p

cos(θ∗u + 2πζa/p)

and

v(b) =

√
2
3p

cos(θ∗v + 2πζb/p)

w(c) =

√
2
3p

cos(θ∗w + 2πζc/p)

for some phase offsets θ∗u, θ∗v , θ∗w ∈ R satisfying θ∗u + θ∗v = θ∗w and some ζ ∈ Zp \ {0} (where ζ is the

same for u, v, and w).

It remains to construct a network θ∗ which uses neurons of the above form and satisfies condi-

tionC.1 and Equation 7.1 with respect to q = unif(Zp).

D.6.2 Proof that conditionC.1 and Equation 7.1 are satisfied

Proof. Our θ∗ will consist of 4(p − 1) neurons: 8 neurons for each of the frequencies 1, . . . , p−12 .

Consider a given frequency ζ. For brevity, let cosζ(x) denote cos(2πζx/p), and similarly for sinζ(x).

310



First, we observe:

cosζ(a+ b− c) = cosζ(a+ b) cosζ(c) + sinζ(a+ b) sinζ(c)

= cosζ(a) cosζ(b) cosζ(c)− sinζ(a) sinζ(b) cosζ(c)

+ sinζ(a) cosζ(b) sinζ(c) + cosζ(a) sinζ(b) sinζ(c)

Each of these four terms can be implemented by a pair of neurons φ1, φ2. Consider the first term,

cosζ(a) cosζ(b) cosζ(c). For the first neuron φ1, set u1(·), v1(·),w1(·) := cosζ(·), and for φ2, set

u2(·) := cosζ(·) and v2(·),w2(·) := − cosζ(·). These can be implemented in the form we derived

by setting (θ∗u, θ∗v , θ∗w) to (0, 0, 0) for the first neuron and (0, π, π) for the second.

Adding these two neurons, we obtain:

φ1(a, b) + φ2(a, b) = (cosζ(a) + cosζ(a))2 cosζ(c) + (cosζ(a)− cosζ(a))2(− cosζ(c))

= 4 cosζ(a) cosζ(b) cosζ(c)

Similarly, each of the other three terms can be implemented by pairs of neurons, by setting the

phase offsets (θ∗u, θ∗v , θ∗w) to

1. ( π2 ,−
π
2 , 0) and (

π
2 ,

π
2 , π)

2. (− π
2 , 0,−

π
2 ) and (−

π
2 , π,

π
2 )

3. (0,− π
2 ,−

π
2 ) and (0,

π
2 ,

π
2 )

If we include such a collection of 8 neurons for every frequency ζ ∈ {1, . . . , p−12 }, the resulting
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network will compute the function

f(a, b) =
(p−1)/2∑
ζ=1

cosζ(a+ b− c)

=

p−1∑
ζ=1

1
2
· exp(2πiζ(a+ b− c)/p)

=


p−1
2 if a+ b = c

0 otherwise

The scaling constant λ for each neuron can be chosen so that the network has L2,3-norm 1. For

this network, every datapoint is on the margin, so q = unif(Zp) is trivially supported on points on

the margin, satisfying Equation 7.1. And for each input (a, b), f takes the same value on all incorrect

labels c′, satisfyingC.1.

D.6.3 Proof that all frequencies are used

Proof. For this proof, we need to introduce the multidimensional discrete Fourier transform. For a

function f : Z3
p → C, the multidimensional DFT of f is defined as:

f̂(j, k, ℓ) :=
∑
a∈Zp

e−2πi·ja/p
∑

b∈Zp

e−2πi·jb/p
∑

c∈Zp

e−2πi·jc/pf(a, b, c)


for allj, k, ℓ ∈ Z.

To simplify the notation, let θu = θ∗u ·
p
2π , so

u(a) =

√
2
3p

cosp(θu + ζa).
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Let

f(a, b, c) =
H∑
h=1

φh(a, b, c)

=
H∑
h=1

(uh(a) + vh(b))2 wh(c)

=

(
2
3p

)3/2 H∑
h=1

(
cosp(θuh + ζha) + cosp(θvh + ζhb)

)2 cosp(θwh + ζhc)

be the function computed by an arbitrary margin-maximizing network of widthH, where each

neuron is of the form derived earlier.

Each neuron φ can be split into three terms:

φ(a, b, c) = φ(1)(a, b, c) + φ(2)(a, b, c) + φ(3)(a, b, c) := u(a)2w(c) + v(b)2w(c) + 2u(a)v(b)w(c)

φ̂(1)(j, k, ℓ) is nonzero only for k = 0, and φ̂(2)(j, k, ℓ) is nonzero only for j = 0. For the third

term, we have

φ̂(3)(j, k, ℓ) = 2
∑

a,b,c∈Zp

u(a)v(b)w(c)ρ−(ja+kb+ℓc) = 2û(j)v̂(k)ŵ(ℓ).
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In particular,

û(j) =
∑
a∈Zp

√
2
3p

cosp(θu + ζa)ρ−ja

= (6p)−1/2
∑
a∈Zp

(
ρθu+ζa + ρ−(θu+ζa)

)
ρ−ja

= (6p)−1/2
ρθu

∑
a∈Zp

ρ(ζ−j)a + ρ−θu
∑
a∈Zp

ρ−(ζ+j)a



=



√
p/6 · ρθu if j = ζ√
p/6 · ρ−θu if j = −ζ

0 otherwise

and similarly for v̂ and ŵ. ζwas defined to be nonzero, so the ζ = 0 case is ignored. Thus, ˆφ(3)(j, k, ℓ)

is nonzero only when j, k, ℓ are all±ζ. We can conclude that φ̂(j, k, ℓ) can only be nonzero if one of

the following conditions holds:

1. j = 0

2. k = 0

3. j, k, ℓ = ±ζ.

Independent of the above considerations, we know by Lemma 7.6 that the function f imple-

mented by the network has equal margin across different inputs and across different classes for the

same input. In other words, f can be decomposed as

f(a, b, c) = f1(a, b, c) + f2(a, b, c)
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where

f1(a, b, c) = F(a, b)

for some F : Zp × Zp → R, and

f2(a, b, c) = λ · 111a+b=c

where λ > 0 is the margin of f.

The Fourier transforms of f1 and f2 are

f̂1(j, k, l) =


F̂(j, k) if ℓ = 0

0 otherwise

and

f̂2(j, k, l) =


λp2 if j = k = −ℓ

0 otherwise
.

Hence, when j = k = −ℓ 6= 0, we must have f̂(j, k, ℓ) > 0. But then, from the conditions

under which each neuron’s DFT φ̂ is nonzero, it must follow that there is at least one neuron for

each frequency.

D.7 Proofs for Sparse parity

Theorem. Consider a single hidden layer neural network of widthmwith the activation function

given by xk, i.e, f(x) =
∑m

i=1(u⊤i x)kwi, where ui ∈ Rn and wi ∈ R2, trained on the (n, k)−sparse

parity task. Without loss of generality, assume that the first coordinate of wi corresponds to the

output for class y = +1. Denote the vector [1,−1] by bbb. Providedm ≥ 2k−1, the L2,k+1 maximum
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margin is:

k!
√
2(k+ 1)−(k+1).

Any network achieving this margin satisfies the following conditions:

1. For every i having ‖ui‖ > 0, spt(ui) = S, wi lies in the span of bbb and ∀j ∈ S, |ui[j]| = ‖wi‖.

2. For every i,
(
Πj∈Sui[j]

)
(w⊤

i bbb) ≥ 0.

Proof. Wewill consider q∗ to be equally distributed on the dataset and optimize the class-weighted

margin as defined in Equation 7.3. We will consider the weight τ(x, y)[y′] = 1 for y′ 6= y. Also,

let aaa denote the vector [1, 1] and bbb denote the vector [1,−1]. Then, any wi ∈ R2 can be written as

wi =
1√
2

[
αiaaa+ βibbb

]
for some αi, βi ∈ R.

First, using lemma 7.5, we can say that one neuron maximizers of class-weighted margin are given

by

argmax
∥[u,w]∥2≤1

E
(x,y)∼D

[
φ({u,w}, x)[y]− φ({u,w}, x)[y′]

]
where y′ = −y, φ({u,w}, x) = (u⊤x)kw and ‖[u,w]‖2 represents the 2-norm of the concatenation

of u and w.

Considering that y ∈ {±1} and w = 1√
2 [αaaa+ βbbb], we can say φ({u,w}, x)[y] = 1√

2(u
⊤x)k[α +

yβ]. Thus, we can say

E
(x,y)∼D

[
φ({u,w}, x)[y]− φ({u,w}, x)[y′]

]
=
√
2 E
(x,y)∼D

[
(u⊤x)kβy

]
=
√
2 E
(x,y)∼D

[
(u⊤x)kβΠi∈Sxi

]
=
√
2k! (Πi∈Sui) β

where in the last step, all other terms are zero by symmetry of the dataset.
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Clearly, under the constraint ‖u‖2 + α2 + β2 ≤ 1 (where ‖w‖2 = α2 + β2), this is maximized

when ui = 0 for i /∈ S, α = 0, ui = ± 1√
k+1 and β = ±

1√
k+1 , with (Πi∈Sui) β > 0.

Now, using Lemma 7.5, we will create a network using these optimal neurons such that it satisfies

C.1, and Equations 7.1 and 7.3, thus concluding by Lemma 7.6. C.1 holds trivially as this is a binary

classification task, so g′ = g.

Consider a maximal subset A ⊂ {±1}k such that if ∈ A, then− /∈ A and for any ∈ A, 1 = 1.

Now, consider a neural network having 2k−1 neurons given by

f(θ, x) =
1

2k−1
∑
∈A

( k∑
i=1

σi√
k+ 1

xSi

)k (
Πk

i=1σi
)

√
k+ 1

1√
2
bbb =

1√
2
k!(k+ 1)−(k+1)/2 (Πi∈Sxi) bbb

By Lemma 7.5, the above neural network also maximizes the class-weighted mean margin. More-

over, it also satisfies Equation 7.1, as every term other than ΠxSi cancels out in the sum.

Consider any monomial Twhich depends only on S′ ⊂ S. Consider any one of the terms in f(x)

and let the coefficient of T in the term given by cT. Consider another term in f(x), where, for some

i ∈ S \ S′ and j = k+ 1, σi and σj are flipped. For this term, the coefficient of Twill be−cT, as for all

i ∈ S′, σi is the same, but σk+1 is different. Thus, for any such monomial, its coefficient in expanded

f(x)will be 0 as terms will always exist in these pairs.

Thus, f(θ, x) satisfiesC.1, Equation 7.1 and 7.3, hence, by Lemma 7.6, any maximummargin

solution satisfies the properties stated in Theorem 7.8.

D.8 Additional Group Representation Theory Preliminaries

In this section we properly define relevant results from group representation theory used in the

proof of Theorem 7.9. We also refer the reader to Kosmann-Schwarzbach et al. (2010), one of many

good references for representation theory.
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Definition D.1. A linear representation of a groupG is a finite dimensional complex vector space

V and a group homomorphismR : G → GL(V). We denote such a representation by (R,V)

or simply justR. The dimension of the representationR, denoted dR, equals the dimension of the

vector spaceV.

In our case we are only concerned with finite groups with real representations, i.e. V = Rd and

each representationRmaps group elements to real invertible d × dmatrices. Furthermore, we are

only concerned with unitary representationsR, i.e. R(g) is unitary for every g. It is a known fact

that every representation of a finite group can be made unitary, in the following sense:

Theorem D.2 (Kosmann-Schwarzbach et al. (2010), Theorem 1.5.). Every representation of a finite

group (R,V) is unitarizable, i.e. there is a scalar product on V such that R is unitary.

Also of particular interest are irreducible representations.

Definition D.3. A representation (R,V) ofG is irreducible ifV 6= {0} and the only vector sub-

spaces ofV invariant underR are {0} orV itself.

A well-known result is Maschke’s Theorem, which states that every finite-dimensional repre-

sentation of a finite group is completely reducible; thus it suffices to consider a fundamental set of

irreducible unitary representations in our analysis.

Theorem D.4 (Maschke’s Theorem.). Every finite-dimensional representation of a finite group is a

direct sum of irreducible representations.

Theorem D.5 (Kosmann-Schwarzbach et al. (2010), Theorem 3.4.). Let G be a finite group. If

R1, ...,RK denote the irreducible representations of G, then |G| =
∑K

n=1 d2Rn
, where dRn represents the

dimensionality of Rn.
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The theory about characters of representations and orthogonality relations are essential for our

max margin analysis. This is a rich area of results, and we only list those that are directly used in our

proofs.

Definition D.6. Let (R,V) be a representation ofG. the character ofR is the function χR : G →

R defined as χR(g) = tr(R(g)) for each g ∈ G.

For each conjugacy class ofG, the character ofR is constant (this can easily be verified via prop-

erties of the matrix trace). More generally, functions which are constant for each conjugacy class

are called class functions onG. Given the characters across inequivalent irreducible representations,

one can construct a “character table” for a groupG in which the columns correspond to the conju-

gacy classes of a group, and whose rows correspond to inequivalent irreducible representations of a

group. The entries of the character table correspond to the character for the representation at that

given row, evaluated on the conjugacy class at that given column.

Characters of inequivalent irreducible representations are in fact orthogonal, which follow from

the orthogonality relations of representation matrix elements. For a unitary irreducible representa-

tionR, define the vectorR(i,j) = (R(g)(i,j))g∈G with entries being the (i, j)th entry of the matrix

output for each g ∈ G underR. We have the following result.

Proposition D.7 (Kosmann-Schwarzbach et al. (2010), Corollary 2.10.). Let (R1,V1) and (R2,V2)

be unitary irreducible representations of G. Choosing two orthonormal bases in V1 and V2, the follow-

ing holds:

1. If R1 and R2 are inequivalent, then for every i, j, k, l, we have 〈R1(i,j),R2(k,l)〉 = 0.

2. If R1 = R2 = R and V1 = V2 = V, then for every i, j, k, l, we have 〈R(i,j),R(k,l)〉 = 1
dR δikδjl,

where δik = 1[i = k].
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Theorem D.8 (Kosmann-Schwarzbach et al. (2010), Theorem 2.11.). Let G be a finite group. If R1

and R2 are inequivalent irreducible representations of G, then 〈χR1
, χR2
〉 = 0. If R is an irreducible

representation of G, then 〈χR, χR〉 = 1.

A fundamental result about characters is that the irreducible characters ofG form an orthonor-

mal set in L2(G) (Kosmann-Schwarzbach et al. (2010), Theorem 2.12.). This implies the following

result, which states that the irreducible characters form an orthonormal basis in the vector space of

class functions onG taking values inR. Since this vector space has dimension equal to the number

of conjugacy classes ofG, it also follows that the number of equivalence classes of irreducible repre-

sentations is the number of conjugacy classes. In other words, the character table is square for every

finite group.

Theorem D.9 (Kosmann-Schwarzbach et al. (2010), Theorem 3.6.). The irreducible characters form

an orthonormal basis of the vector space of character functions.

In section D.9 of the Appendix, we rigorously define the basis vectors for network weights based

on the representation matrix elements defined in Proposition D.7, and establish the properties they

satisfy, which are key to our analysis.

D.8.1 A Concrete Example: Symmetric Group

The symmetric group Sn consists of the permutations over a set of cardinality n. The order of the

group is n!. It is a fact that every permutation can be written as a product of transpositions—a

permutation which swaps two elements. We can associate with each permutation the parity of the

number of transpositions needed, which is independent of the choice of decomposition.

We will provide a concrete description of the representation theory for S5, which is a central
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class e (1 2) (1 2)(3 4) (1 2 3) (1 2 3 4) (1 2 3 4 5) (1 2)(3 4 5)
size 1 10 15 20 30 24 20
R1 1 1 1 1 1 1 1

R2(sign) 1 −1 1 1 −1 1 −1
R3(standard) 4 −2 0 1 0 −1 1

R4(standard⊗ sign) 4 2 0 1 0 −1 −1
R5(5d_a) 5 1 1 −1 −1 0 1
R6(5d_b) 5 −1 1 −1 1 0 −1
R7(6d) 6 0 −2 0 0 1 0

Table D.1: Character table of S5.

group of study in this paper. It has 7 conjugacy classes, which we denote as

{e, (1 2), (1 2)(3 4), (1 2 3), (1 2 3 4), (1 2 3 4 5), (1 2)(3 4 5)}

(selecting one representative from each conjugacy class). It also has 7 irreducible representations.

Apart from the trivial representation, it has another 1-dimensional sign representation representing

the parity of a permutation.

The symmetric group also has an n-dimensional representation which is the natural permuta-

tion representation, mapping permutations to permutation matriceswhich shuffle the n coordinates.

It turns out that this is in fact reducible, since this has the trivial subrepresentation consisting of

vectors whose coordinates are all equal. Decomposing this representation into irreducible represen-

tations results in the trivial representation and what is called the standard representation of dimen-

sion n−1. It has another n−1-dimensional representation, which is the product of sign and standard

representations.

The final three representations of S5 are higher-dimensional, with dimensions 5, 5, and 6. We

denote them as 5d_a, 5d_b, and 6d. We give the character table of S5 in Table D.1, which will be

useful for calculating the value of the max margin which we theoretically derive.
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D.9 Proofs for finite groups with real representations

In this section we prove that for finite groups with real representations, all max margin solutions

have neurons which only use a single irreducible representation.

Theorem. Consider a single hidden layer neural network of widthmwith quadratic activation

trained on learning group composition forGwith real irreducible representations. Providedm ≥

2
∑K

n=2 dRn
3 and

∑K
n=2 dRn

1.5χRn
(C) < 0 for every non-trivial conjugacy class C, the L2,3 maxi-

mummargin is:

γ∗ =
2

3
√
3|G|

1(∑K
n=2 d

2.5
Rn

) .
Any network achieving this margin satisfies the following conditions:

1. For every neuron, there exists a non-trivial representation such that the input and output

weight vectors are spanned only by that representation.

2. There exists at least one neuron spanned by each representation (except for the trivial repre-

sentation) in the network.

LetR1, . . . ,RK be the unitary irreducible representations and let C1, . . . ,CK be the conjugacy

classes of a finite groupGwith real representations. We fixR1 to be the trivial one-dimensional rep-

resentation mappingR1(g) = 1 for all g ∈ G and C1 to be the trivial conjugacy class C1 = {e}. For

each of these representations (V,R) of the groupG, whereR : G → V, we will consider the |G|-

dimensional vectors by fixing one position in the matrixR(g) for all g ∈ G, i.e. vectors (R(g)i,j)g∈G

for some i, j ∈ [dV]. These form a set of |G| vectors which we will denote ρ1, ..., ρ|G| (ρ1 is always the

vector corresponding to the trivial representation). These vectors in fact form an orthogonal basis,

and satisfy additional properties established in the following lemma.

Lemma D.10. The set of vectors ρ1, ..., ρ|G| satisfy the following properties:
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1.
∑

a∈G ρi(a)ρj(a) = 0 for i 6= j. (Orthogonality)

2.
∑

a∈G ρi(a)
2 = |G|/dV for all i, where dV is the dimensionality of the vector space V corre-

sponding to the representation that ρi belongs to.

3. For all the ρj which correspond to off-diagonal entries of a representation,
∑

a∈Ci
ρj[a] = 0, i.e,

the sum of elements within the same conjugacy class is 0.

4. If ρj and ρk correspond to different diagonal entries within the same representation, then∑
a∈Ci

ρj[a] =
∑

a∈Ci
ρk[a], i.e, for the diagonal entries, the sum for a given conjugacy class

is invariant with the position of the diagonal element.

Proof. The first two properties are the orthogonality relations of unitary representation matrix

elements (Proposition D.7), and the last two points follow additionally from Proposition 2.7 and

Proposition 2.8 in Kosmann-Schwarzbach et al. (2010).

Since this set of |G|-dimensional vectors are orthogonal to each other, each set of weights for a

neuron in our architecture can be expressed as a linear combination of these basis vectors

u =
∑
i∈[|G|]

αiρi, v =
∑
i∈[|G|]

βiρi, w =
∑
i∈[|G|]

γiρi.

It will also be useful to define the matrices αRi , βRi
, γRi

for each irreducible representationRi of

Gwhich consist of the coefficients for u, v, and w corresponding to each entry in the representation

matrix.

Let hu,v,w(c) := Ea,b
[
(u(a) + v(b))2w(a ◦ b ◦ c)

]
. Recall we seek solutions for the following

weightedmargin maximization problem

hu,v,w(e)−
∑
c ̸=e

τchu,v,w(c), where
∑
c ̸=e

τc = 1. (D.7)
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Note that if we substitute the weights u, v,w in terms of the basis vectors in the definition of hu,v,w

hu,v,w(c) = E
a,b

[(∑
αiρi(a) +

∑
βiρi(b)

)2 (∑
γiρi(a ◦ b ◦ c)

)]

and we expand this summation, all terms involving the trivial representation vector ρ1 will equal

zero since it is constant on all group elements. Furthermore, for terms of the form

E
a,b
[ρi(a)

2ρk(a ◦ b ◦ c)] = E
a
[ρi(a)

2 E
b
[ρk(a ◦ b ◦ c)]] = 0

due to Eb[ρk(a ◦ b ◦ c)] = 0 by orthogonality to the trivial representation vector.

Thus as was the case for the cyclic group, we study the term h̃u,v,w(c) := Ea,b [u(a)v(b)w(a ◦ b ◦ c)]

and derive an expression for the weighted margin in the following lemma.

Lemma D.11. Suppose the weights τc in the expression for the weighted margin in D.7 were constant

over conjugacy classes, i.e. we have τc = τCi for all c ∈ Ci and i ∈ [K]. Then the weighted margin can

be simplified as
K∑

m=2

(
1−

K∑
n=2

τCn |Cn|χRm
(Cn)

dRm

)
tr(αRmβRm

γRm
T)

dRm
2 .

Proof. Consider one term Ea,b[αiβjγkρi(a)ρj(b)ρk(a ◦ b ◦ c)] in the expansion of the product

in h̃u,v,w(c). Note that ρk(a ◦ b ◦ c) is one entry in the matrix of some irreducible representation

evaluated at a ◦ b ◦ c; this can be expanded in terms of the same irreducible representationmatrix

evaluated at a, b, and c using matrix multiplication. This results in terms of the form

ρi(a)ρj(b)ρi′(a)ρj′(b)ρk′(c)

in the expectation, where ρi′ and ρj′ correspond to entries of matrices from the same representa-

tion as ρk′ . Thus if either ρi or ρj correspond to vectors from a different representation than ρk, the
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expectation of this term will be zero, by orthogonality of the basis vectors.

Hence we can assume that ρi, ρj, ρk correspond to entries from the same representation (V,R).

Let d = dV. Let us write i = (i1, i2), j = (j1, j2), k = (k1, k2), the matrix indices for this representa-

tion. We can expand the term ρk(a ◦ b ◦ c) as described above.

ρi(a)ρj(b)ρk(a ◦ b ◦ c) = ρi(a)ρj(b)
d∑

m=1
ρ(k1,m)(a ◦ b)ρ(m,k2)(c)

=
d∑

ℓ=1

d∑
m=1

ρ(i1,i2)(a)ρ(k1,ℓ)(a)ρ(j1,j2)(b)ρ(ℓ,m)(b)ρ(m,k2)(c).

From this it is clear that when taking the expectation over choosing a, b uniformly, the only non-

zero terms are when (i1, i2) = (k1, ℓ) and (j1, j2) = (ℓ,m), once again by orthogonality of the basis

vectors. Thus we have

αiβjγkρi(a)ρj(b)ρk(a ◦ b ◦ c) = α(i1,j1)β(j1,j2)γ(i1,k2)ρ
2
(i1,j1)(a)ρ

2
(j1,j2)(b)ρ(j2,k2)(c).

Moreover, we knowE[ρi(a)
2] = 1/d, where d is the dimensionality of the representation. Now,

for a particular c, we will evaluate group all terms containing ρ(j2,k2)(c) and take the expectation over

a, b, which yields

1
d2

d∑
i1=1

d∑
j1=1

α(i1,j1)β(j1,j2)γ(i1,k2)ρ(j2,k2)(c). (D.8)

From the third property of Lemma D.10, for every conjugacy class Cn for n ∈ [K], we have

∑
c∈Cn

1
d2

d∑
i1=1

d∑
j1=1

α(i1,j1)β(j1,j2)γ(i1,k2)ρ(j2,k2)(c) = 0

for j2 6= k2. Thus, we can focus on diagonal entries ρ(k,k)(c) (i.e. where j2 = k2 in the expression
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D.8 above). In this case, following directly fromD.8 grouping all terms containing ρ(k,k)(c)we get

1
d2

d∑
i1=1

d∑
j1=1

α(i1,j1)β(j1,k)γ(i1,k)ρ(k,k)(c). (D.9)

Note that this coefficient in front of ρ(k,k)(c) is the sum of the entries of the kth column of the

matrix (αRβR) � γR divided by d
2 (with αRβR interpreted as matrix product and� being the

Hadamard product). Recall that i1, j1, and k are indices from the same representationR. By sum-

ming over all diagonal entries (k, k) inR, we evaluate the expression

∑
i1,j1,k∈[d]

α(i1,j1)β(j1,k)γ(i1,k)
d2

ρk,k(e)−∑
c ̸=e

τcρ(k,k)(c)


=

tr(αRβRγR
T)

d2

[
1−

K∑
n=2

τCn

∑
c∈Cn

ρ(k,k)(c)

]

where we have replaced τc with the same weight τCn for each non-trivial conjugacy class C2, . . . ,CK

and the term
∑

c∈Cn
ρ(k,k)(c) is independent of the choice of k (by property 4 of Lemma D.10).

Thus after summing over all k ∈ [d] the coefficient in equation D.9 is the sum of all entries of the

matrix (αRβR)� γR (which equals tr(αRβRγR
T)). Furthermore,

|Cn|χR(Cn) =
∑
c∈Cn

∑
k∈[d]

ρ(k,k)(c) =
∑
k∈[d]

∑
c∈Cn

ρ(k,k)(c) = d
∑
c∈Cn

ρ(k,k)(c)

where the first equality follows from the definition of the character of the representationRwhich is

constant over elements in the same conjugacy class, and the last equality follows again from property

4 of Lemma D.10). Thus
∑

c∈Cn
ρ(k,k)(c) = |Cn|χR(Cn)/d for all k.

Now we can evaluate our result for the weighted margin. The expression in D.10 is the contri-

bution of one representationR to the total weighted margin. Thus by summing over all non-trivial
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representations ofG, we get the final result.

h̃u,v,w(e)−
∑
c ̸=e

wch̃u,v,w(c) = h̃u,v,w(e)−
K∑

n=2
τCn

∑
c∈Cn

h̃u,v,w(c) (D.10)

=
K∑

m=2

∑
i1,j1,k∈[dRm ]

α(i1,j1)β(j1,k)γ(i1,k)
d2

ρk,k(e)−∑
c ̸=e

τcρ(k,k)(c)

 (D.11)

=
K∑

m=2

tr(αRmβRm
γRm

T)

d2

[
1−

K∑
n=2

τCn

∑
c∈Cn

ρ(k,k)(c)

]
(D.12)

=
K∑

m=2

[
1−

K∑
n=2

τCn |Cn|χRm
(Cn)

dRm

]
tr(αRmβRm

γRm
T)

dRm
2 . (D.13)

We have simplified the weighted margin expression for any set of weights on the conjugacy classes.

Recall that we wish to optimize this weighted margin across individual neurons and then scale them

appropriately to define the network θ∗ satisfyingC.1 and Equation 7.1 to find the max margin solu-

tion.

The next lemma establishes the original L2 norm restraint over neurons on the weighted margin

problem in terms of the coefficients with respect to each representation.

Lemma D.12. The L2 norm of u, v and w are related to the Frobenius norm of α, β and γ as follows:

‖u‖2 + ‖v‖2 + ‖w‖2 =
K∑

m=1

|G|
dRm

(
‖αRm‖2F + ‖βRm

‖2F + ‖γRm
‖2F
)

Proof. The proof follows from 1st and 2nd point of Lemma D.10.

By the above two lemmas, we want to maximize the weighted margin with respect to the norm

constraint
K∑

m=1

|G|
dRm

(
‖αRm‖2F + ‖βRm

‖2F + ‖γRm
‖2F
)
≤ 1. (D.14)
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Under this constraint, the following lemma provides the maximum value for the weighted mar-

gin, which occurs only when the weights u, v,w are spanned by a single representationR.

Lemma D.13. Consider the set of representationsR given by

R := argmax
m=2,..,K

1√
dRm

[
1−

K∑
n=2

τCn |Cn|χRm
(Cn)

dRm

]

The weighted margin in LemmaD.11 is maximized under the norm constraint in (D.14) only when

the weights u, v,w are spanned by a single representation belonging to the setR; that is, αR, βR, γR 6≡ 0

for only one non-trivial representation R ∈ R, and are 0 otherwise. In this case, the maximum value

attained is
1

3
√
3|G|3/2

max
m=2,..,K

1√
dRm

[
1−

K∑
n=2

τCn |Cn|χRm
(Cn)

dRm

]
.

Proof. First we consider the case where u, v,w are spanned by only one representation. Then it

suffices to evaluate

max
αR,βR,γR

tr(αRβRγR
T)

d2
s.t.
(
‖αR‖2F + ‖βR‖

2
F + ‖γR‖

2
F
)
≤ d
|G|

.

Here let’s denote the columns of αR (resp. βR) as α⃗j = (αj,1, . . . , αj,d) for 1 ≤ j ≤ d (resp. β⃗j).

Thus tr(αRβRγR
T) =

∑
j,k(α⃗j · β⃗k)γ(j,k). This can be viewed as the dot product of the linearizations

of αRβR and γR, and thus by Cauchy-Schwarz it follows that

∑
j,k

(α⃗j · β⃗k)γ(j,k) ≤
√∑

j,k

(α⃗j · β⃗k)2
√
‖γR‖2F

with equality when γ(j,k) is proportional to α⃗j · β⃗k. We can apply Cauchy-Schwarz once again to
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the first term on the right hand side above and obtain

√∑
j,k

(α⃗j · β⃗k)2 ≤
√∑

j,k

‖α⃗j‖22‖β⃗k‖22 =
√
‖αR‖2F‖βR‖2F

once again with equality when all α⃗j, β⃗k are proportional to each other. Combining these together,

we want to maximize
√
‖αR‖2F‖βR‖2F‖γR‖2F subject to

(
‖αR‖2F + ‖βR‖

2
F + ‖γR‖

2
F
)
≤ d

|G| . By the

AM-GM inequality, we have

√
‖αR‖2F‖βR‖2F‖γR‖2F ≤

(
‖αR‖2F + ‖βR‖

2
F + ‖γR‖

2
F

3

)3/2

with equality when ‖αR‖2F = ‖βR‖
2
F = ‖γR‖

2
F = d

3|G| . Thus the maximum value attained is

1
(|G|3/23

√
3d)

[
1−

∑K
n=2

τCn |Cn|χR(Cn)

dR

]
.

Now consider the general case when u, v,wwere spanned by the representationsR2, ...,RK (as

R1 does not appear in Equation D.13). The norm constraint now becomes

K∑
m=2

|G|
dRm

(
‖αRm‖2F + ‖βRm

‖2F + ‖γRm
‖2F
)
≤ 1.

This can be equivalently written as

‖αRm‖2F + ‖βRm
‖2F + ‖γRm

‖2F ≤
dRmεm
|G|

∀m ∈ {2, ...,K}

εm ≥ 0 ∀m ∈ {2, ...,K}
K∑

m=2
εm ≤ 1
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Repeating the calculation above, we get that for a given ε2, ..., εK, the maximummargin is given by

K∑
m=2

ε3/2m

3
√
3|G|3/2

1√
dRm

[
1−

K∑
n=2

τCn |Cn|χRm
(Cn)

dRm

]

Wewant to maximize the expression above under the constraint that εm ≥ 0 ∀m ∈ {2, ...,K}

and
∑

εm ≤ 1.

Clearly, this is maximized only when one of the εi = 1 and everything else is 0, with

i ∈ argmax
m=2,..,K

1√
dRm

[
1−

K∑
n=2

τCn |Cn|χRm
(Cn)

dRm

]
.

Up until this point, we have kept our weighted margin problem generic without setting the τCn .

If we naively chose τCn to weigh the conjugacy classes uniformly, then the maximizers for this spe-

cific weighted margin would be only neuron weights spanned by the sign representation (of dimen-

sion 1). However, we cannot hope to correctly classify all pairs a, b ∈ G using only the sign repre-

sentation for our network θ∗ and thus the maximizers for this weighted margin cannot be the maxi-

mizers for the original max margin problem. The next lemma establishes an appropriate assignment

for each τCn such that the expression in Lemma D.13 is equal for all non-trivial representationsR,

provided some conditions pertaining to the group are satisfied. Since the function g 7→ τC (where C

is the conjugacy class containing g) is a class function, each τCn can be expressed as a linear combina-

tion of characters χR(Cn).

Lemma D.14. For the group G if we have
∑

R d
1.5
R χR(C) < 0 for every non-trivial conjugacy class C,

then the weights τCn can be set as

τCn =
∑
R

zRχR(Cn)
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where zRtriv = 0 and zR =
d1.5R∑K

m=2 d
2.5
Rm

otherwise, such that the maximum value from LemmaD.13 is

equal for all non-trivial representations R.

Proof. Define the vectors τ and char(R) as

char(R) = [χR(C1), χR(C2), . . . , χR(C2)︸ ︷︷ ︸
|C2| times

, ... χR(CK), . . . , χR(CK)︸ ︷︷ ︸
|CK| times

],

τ = [1,−τC2 , . . . ,−τC2︸ ︷︷ ︸
|C2| times

, ...−τCK , . . . ,−τCK︸ ︷︷ ︸
|CK| times

].

Then we can rewrite the max value of the weighted margin in Lemma D.13 as

1
|G|3/23

√
3dR

[
1
dR

char(R)Tτ
]

(D.15)

for each non-trivial representationR. Since τ is a class function (viewed as a function onG), we can

express τ as a linear combination τ =
∑K

n=1 zRnchar(Rn) of character vectors for each representa-

tion. By orthogonality, the inner product char(R)Tτ = zR. Thus for the expression (D.15) to be

equal for every non-trivial representationR, we require

zR = d3/2R zRsign .

Furthermore, since 1 −
∑K

n=2 τCn = 0 and char(Rtriv) is a vector with strictly positive values that

is orthogonal to all other character vectors, we must have zRtriv = 0. To solve for zRsign , since the first

component of τ equals 1 and χR(C1) = dR for allR, we have

K∑
m=2

zRmdRm =

K∑
m=2

d2.5RmzRsign = 1 =⇒ zRsign =

K∑
m=2

d2.5Rm .

To conclude the proof, note that we need the weights τCn to be positive; this is guaranteed as long as
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for each conjugacy class C, we have
∑K

n=2 χRn
(C)dRn

3/2 < 0 (recall the entries of τ being−τCn).

Up until now, we have established a weighted margin problem and proven that the neurons

which maximize this are spanned by only one representation out of any of the non-trivial repre-

sentations. Now we give a precise construction of the neuron weights u, v,w such that they imple-

ment tr(R(a)R(b)R(c)−1) for all inputs a, b ∈ G and outputs c ∈ G for a given representation

R. These neuron weights expressed in terms of the basis vectors will have coefficients that also maxi-

mize tr(αRβRγR
T).

Lemma D.15. For every non-trivial representation R, there exists a construction of the network weights

such that given inputs a, b ∈ G, the output at c is tr(R(a)R(b)R(c)−1) using 2dR3 neurons and the

corresponding coefficients αR, βR, γR for each neuron achieve the maximum value tr(αRβRγR
T) =

(dR/3|G|)3/2.

Proof. Since the representations are unitary, we have

tr(R(a)R(b)R(c)−1) = tr(R(a)R(b)R(c)T) =
∑
i,j,k

R(a)(i,j)R(b)(j,k)R(c)(i,k)

and thus it suffices to show how to obtainR(a)(i,j)R(b)(j,k)R(c)(i,k) with a combination of neu-

rons. For this, set one neuron’s coefficients to equal α(i,j) = β(j,k) = γ(i,j) = 1/
√
3|G| and 0

otherwise. Then the output given (a, b) at c is

(R(a)(i,j) + R(b)(j,k)2R(c)(i,k)
(3|G|)3/2

.

Set another neuron’s coefficients to equal α(i,j) = 1/
√
3|G|, β(j,k) = γ(i,k) = −1/

√
3|G|. Then
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the sum of the outputs of these two neurons at c is precisely

R(a)(i,j)R(b)(j,k)R(c)(i,k)
(3|G|)3/2

.

Thus we need 2d3R neurons to create the summand for each i, j, k to implement tr(R(a)R(b)R(c)−1).

This construction also satisfies tr(αRβRγR
T) = (dR/3|G|)3/2 for every neuron.

Once we have defined these neuron constructions, it only remains to scale these optimal neu-

rons appropriately as given in Lemma 7.5 such that we can construct our final network θ∗ satisfying

conditionC.1 and Equation 7.1.

Lemma D.16. Given the network given in LemmaD.15, for every neuron spanned by non-trivial

representation R we scale the weights u, v,w by d1/3R /Δ, where Δ is a constant normalization term

such that the norm constraints of the max margin problem still hold. Then the expected output of any

element contained in any non-trivial conjugacy class C for inputs a, b is−1/Δ3, i.e. the output is equal

for all conjugacy classes.

Proof. For a given neuron spanned by a non-trivial representationR, we know that its output for at

c for each input pair (a, b) is χR(abc
−1) = χR(C)where C is the conjugacy class containing abc

−1.

After scaling each weight by d1/3R /Δ, the corresponding output is scaled by dR/Δ3. Due to column

orthogonality of the characters with the trivial conjugacy class (i.e.
∑K

n=1 χRn
(e)χRn

(C) = 0 for for

all non-trivial conjugacy classes C), this output simplifies to

K∑
n=2

dRnχR(C)
Δ3 = − 1

Δ3

K∑
n=2

dRnχR(C)
Δ3 = − 1

Δ3 , (D.16)

which is constant for all non-trivial conjugacy classes C.
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With this lemma, we define the network θ∗ according to this scaling and guarantee that it satisfies

C.1 and Equation 7.1. Applying Lemma 7.5 gives us our final result that the solutions for the max

margin problem have the desired properties in Theorem 7.9.

D.9.1 Proof that all representations are used

This proof follows exactly the same argument as for the modular addition case (Section D.6.3).

For this proof, we will introduce the multidimensional Fourier transform for groups. For a func-

tion f : G3 → R, this is defined as

f̂(j, k, l) =
∑
a∈|G|

ρj(a)
∑
b∈|G|

ρk(b)
∑
c∈|G|

ρl(c)f(a, b, c)

Similar to the modular addition case, for a single margin maximizing neuron, we know it uses

only one of the representations for input and output neurons, let’s sayRm. Then, considering just

the basis vectors with respect toRm, we can say, that the output of this neuron is given by

f(a, b, c) =

∑
i∈dRm

∑
j∈dRm

α(i,j)ρ(i,j)[a] + β(i,j)ρ(i,j)[b]

2∑
k∈dRm

∑
l∈dRm

γ(k,l)ρ(k,l)[c]


Now, for the squared terms, these are either dependent on a, c or b, c. These have non-zero

fourier coefficients only if j = 0 or k = 0.

For the cross terms, by orthogonality of the representatons, we can say, if either j, k or l does not

belong toRm, then f̂(j, k, l) = 0.

Thus, for a single neuron, f̂(j, k, l) is only non-zero if j = 0, k = 0 or if j, k and l belong to the

same representation.

Independent of the above considerations, we know by Lemma 7.6 that the function f imple-

mented by the network has equal margin across different inputs and across different classes for the
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same input. In other words, f can be decomposed as

f(a, b, c) = f1(a, b, c) + f2(a, b, c)

where

f1(a, b, c) = F(a, b)

for some F : G× G→ R, and

f2(a, b, c) = λ · 111a◦b=c

where λ > 0 is the margin of f.

The Fourier transform of f1 is

f̂1(j, k, l) =


F̂(j, k) if ℓ = 0

0 otherwise

For f2, consider the expression of the fourier transform:

f̂2(j, k, l) = λ
∑
a∈|G|

ρj(a)
∑
b∈|G|

ρk(b)ρl(a ◦ b)

Now, ρl(a ◦ b) =
∑

ρl′(a)ρk′(b) for some j
′, k′ given by the relation thatR(a ◦ b) = R(a)R(b),

whereR(a)R(b) denoted the matrix product ofR(a) andR(b). Now, clearly if j, k and l belong

to different representations, then f̂2(j, k, l) is 0. For j, k, l belonging to the same representation,

f̂2(j, k, l)will be non-zero whenever j = j′ and k = k′ (or j = k′ and k = j′), and the value will be

given by λ|G|2/d2Rm
. Thus, f = f1 + f2 has support on all the representations.

But, this is only possible if there is atleast one neuron for each representation, as a single neuron

places non-zero fourier mass only on one of the representation.
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D.9.2 A General Theorem for Finite Groups

As mentioned in section 7.6, Theorem 7.9 does not hold for all groups because of the required con-

dition that
∑K

n=2 d
1.5
Rn
χRn

(C) < 0 for every non-trivial conjugacy class. Recall that in the previous

section, we had to define an appropriate weighting over all conjugacy classes such that the margin of

a neuron did not scale down with the dimension of the neuron’s spanning representation. We also

had to define an appropriate scaling over all representations so we could use the neuron maximizers

of the weighted margin to construct a network θ∗ to invoke Lemma 7.5. This is akin to selecting the

entire character table for our margin analysis; in this section, we show how our analysis is amenable

to selecting a subset of the character table for the margin analysis of a general finite groupG, which

can lead to a max margin solution in the same way as above. This will occur upon solving a system

of two linear equations, as long as these solutions satisfy some conditions.

Namely, let κR, κC ⊂ [K] \ {1} be subsets indicating which representations and which conjugacy

classes will be considered in the scaling and weighting respectively, with |κR| = |κC|. If we view the

character table as a matrix and consider the square submatrix pertaining to only the representations

indexed by elements in κR and the conjugacy classes indexed by elements in κC, the rows are χRm
for

fixedm ∈ κR and the columns are [χRm
(Cn)]m∈κR for fixed n ∈ κC.

Instead of requiring expression (D.15) to be equal for all representations in the proof of Lemma D.14,

we can instead require that they are equal across representations in κR. To be precise, consider the

following set of equations over variables τCn , n ∈ κC:

(
1−

∑
n∈κC

τCn |Cn|χRm

dRm

)
=

√
dRm

dRm′

(
1−

∑
n∈κC

τCn |Cn|χRm′

dRm′

)
∀ m,m′ ∈ κR,

∑
n∈κC

τCn = 1.

This gives a system of |κC| linear equations in |κC| variables. Let the solution be denoted as τ∗Cn
for
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each n ∈ κC.

Furthermore, just as we established in equation D.16, we can identify a scaling dependent on

each representation such that the output remains constant for all conjugacy classes in κC and such

that if we had used this scaling for neurons maximizing the weighted margin, the L2,3 norm con-

straint is maintained. This can be represented using the following set of equations with variables

λRm :

∑
m∈κR

λRmχRm
(Cn) =

∑
m∈κR

λRmχRm
(Cn′) ∀ n, n′ ∈ κC

∑
m∈κR

λRm = 1.

This again forms a system of |κR| linear equations in |κR| variables. Let the solution be denoted

as λ∗Rm . Suppose the following conditions are satisfied:

1. The weighting and scaling are positive: λ∗Rm , τ
∗
Cn
≥ 0 for allm ∈ κR, n ∈ κC.

2. For anym ∈ κR andm′ /∈ κR, we have

(
1−

∑
n∈κC

τCn |Cn|χRm

dRm

)
≥

√
dRm

dRm′

(
1−

∑
n∈κC

τCn |Cn|χRm′

dRm′

)
.

3. For any n ∈ κC and n′ /∈ κC, we have

∑
m∈κR

λRmχRm
(Cn) ≥

∑
m∈κR

λRmχRm
(Cn′).

The second condition ensures that the representations in κR indeed maximize the weighted margin,

and no other representations maximize it. The third condition above ensures that the conjugacy

classes in κC are on the margin, and no other conjugacy class can be on the margin. Then it follows
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that neurons spanned by the representations in κR will maximize the weighted margin defined using

τ∗ with all conjugacy classes in κC on the margin, and thus scaling these neurons by λ∗, we have a

network θ∗ that is a max margin solution for the groupG.
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E
Induction Heads

E.1 Proofs

In this section, we present our theoretical results on in-context learningMarkov Chains with the

minimal model of Section 8.2.3.

Setup and notation Our data consists of sequences of length t, xxx = (x1, . . . , xt), drawn

from aMarkov Chain with state space S = {1, . . . , k} (i.e., xj ∈ {1, . . . , k} for all j ∈ [t]), and a
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random transition matrixP . Each row of the matrix is sampled from a Dirichlet distribution with

concentration parameter α, i.e. Pi,: ∼ Dir(α). Unless stated otherwise, we set α = (1, . . . , 1)⊤,

corresponding drawing the row from a uniform distribution over the simplex. Let exp ∈ {0, 1}k

denote the one-hot embedding of the state at position p ∈ [t] and let e ∈ Rt×k be the embedding

matrix. We assume there are 2 states in the Markov Chain, i.e. k = 2. In that case, the transition

matrix can be parameterized as:

P =

 a 1− a

1− b b

 , (E.1)

where a, b ∼ Unif(0, 1).

Model We define our model as a simplified sequence to sequence linear transformer f : Rt×k →

Rt×k with f(e) = mask
(
eWk(Me)T

)
e. It isWk ∈ Rk×k andM =



v1 0 . . . 0

v2 v1 . . . 0
...

... · · ·
...

vt vt−1 . . . v1


, where

v = [v1, v2, . . . , vt] ∈ Rt. Equivalently, we can express the i-th logit for the p-th position as:

f(e)p,i =
p∑

t′=1

1 {xt′ = i}
t′∑
s=1

vt′−s+1e⊤xpWkexs . (E.2)

The model can represent the unigrams and bigrams solutions as following:

• Construction for bigrams: v = (0, 1, 0, . . . , 0)⊤ andWk = Ik×k, then f(e)p,i =
∑p

t′=2 1 {xt′ = i} 1
{
xt′−1 = xp

}
.

• Construction for unigrams: v = (1, 0, 0, . . . , 0)⊤ andWk = 11T (all ones), then f(e)p,i =∑p
t′=1 1 {xt′ = i}.
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Training We analyze stochastic gradient descent training with the margin loss lM(f(e)p,:, xp+1) =

1
k
∑k

i=1,i ̸=xp+1
max

{
0,Δ + f(e)p,i − f(e)p,xp+1

}
. The total loss (sum of the losses across all posi-

tions) is given by

L(f(e), e) =

1
t

t∑
p=1

lM(f(e)p,:, xp+1)

 , (E.3)

and the population loss:

L = E
xxx∼P

P∼Dir(α)⊗k

L(f(e), e), (E.4)

where recall e depends on xxx.

We next compute gradients of the loss for the first two steps.

Lemma E.1. Let the model defined as in eq. (E.2) and initialized withWk = c11T, v = c1T. Then,

after one step of gradient descent on the population loss (E.4) we have:

W(1)
k =

c c

c c

+ cη

O(t2)
B A

A B

+ O(t)


v(1)j = c+

cη
t

[
(t− j+ 1)(t− j+ 2)

2
D+ O(t)

]
, j ∈ [t],

(E.5)

where A,B,D > 0 with B ≈ 4A (diagonal bias) and η is the learning rate. After the second step, v(2)2

becomes dominant, i.e. v(2)2 > v(2)j , j = 1, 3, 4, . . . , t.

Proof. First step. We analyze the first step of stochastic gradient descent. The function at initializa-

tion is

f0(e)p,i = c2
p∑

t′=1

1 {xt′ = i}
t′∑
s=1

e⊤xp11
Texs

= c2
p∑

t′=1

1 {xt′ = i} t′ ∈ [0, c2
p(p+ 1)

2
].

(E.6)
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By choosing Δ ≥ c2 t(t+1)2 , we ensure that Δ + f0(e)p,i − f0(e)p,xp+1 ≥ 0, for all p ∈ [t]. From the

total law of expectation it is:

E
xxx∼P

P∼Dir(α)⊗k

[L] = EP∼Dir(α)⊗k [Exxx∼P [L|P ]] . (E.7)

We will first focus on the inner conditional expectation and at the end of the calculations we will

take expectation with respect the transition matrix. In what follows, unless otherwise stated,E and

Pwill be with respect to the randomness of xxx conditioned onP .

Then the gradient of the loss with respect toWk is:

∇WkExxx∼P [L|P ] = 1
t

t∑
p=1

1
k

k∑
i=1,i̸=xp+1

E
[
1
{
Δ + f(e)p,i − f(e)p,xp+1 ≥ 0

} (
∇Wkf(e)p,i −∇Wkf(e)p,xp+1

)]
=

1
t

t∑
p=1

1
k

k∑
i=1,i̸=xp+1

E
[(
∇Wkf(e)p,i −∇Wkf(e)p,xp+1

)]
=

1
t

t∑
p=1

1
k

k∑
i=1

E
[(
∇Wkf(e)p,i −∇Wkf(e)p,xp+1

)]
=

1
t

t∑
p=1

[(
1
k

k∑
i=1

E
[
∇Wkf(e)p,i

])
− E

[
∇Wkf(e)p,xp+1

]]
.

(E.8)

From equation (E.2), we have for the gradient of logit i:

∇Wkf(e)p,i = c
p∑

t′=1

1 {xt′ = i}
t′∑
s=1

expeTxs , (E.9)

342



or, equivalently, its elements are:

(
∇Wkf(e)p,i

)
m,l = c

p∑
t′=1

1 {xt′ = i}
t′∑
s=1

1{xp = m}1{xs = l}, (E.10)

and their expectation (with respect to xxx conditioned onP) is:

E
[(
∇Wkf(e)p,i

)
m,l

]
= c

p∑
t′=1

t′∑
s=1

P
[
xs = l, xt′ = i, xp = m

]
. (E.11)

Similarly, for the ground truth logit:

E
[(
∇Wkf(e)p,xp+1

)
m,l

]
= c

p∑
t′=1

t′∑
s=1

P
[
xs = l, xt′ = xp+1, xp = m

]
. (E.12)

Thus, by substituting back to eq. (E.8) we have :

−∇WkExxx∼P [L|P ] = c
t

t∑
p=1

p∑
t′=1

t′∑
s=1

P
[
xs = l, xt′ = xp+1, xp = m

]
− c

tk

k∑
i=1

t∑
p=1

p∑
t′=1

t′∑
s=1

P
[
xs = l, xt′ = i, xp = m

]
=

c
t

k∑
i=1

t∑
p=1

p∑
t′=1

t′∑
s=1

P
[
xp+1 = i, xs = l, xt′ = i, xp = m

]
− c

tk

k∑
i=1

t∑
p=1

p∑
t′=1

t′∑
s=1

P
[
xs = l, xt′ = i, xp = m

]
=

c
t

k∑
i=1

(
Pmi −

1
k

) t∑
p=1

p∑
t′=1

t′∑
s=1

P
[
xs = l, xt′ = i, xp = m

]
=

c
t

k∑
i=1

(
Pmi −

1
k

) t∑
p=1

p∑
t′=1

t′∑
s=1

P
[
xp = m | xt′ = i

]
P [xt′ = i | xs = l]P [xs = l]

=
c
t

k∑
i=1

(
Pmi −

1
k

) t∑
p=1

p∑
t′=1

t′∑
s=1

(
Pp−t′

)
im

(
P t′−s

)
li
πl,

(E.13)

where we used the Markov property and the assumption that the chain has reached its stationary
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distribution π ∈ R1×k, so P [xt = i] = πi for all t > 0, i ∈ [k]. Recall that, in the case of k = 2, the

(random) transition matrix can be parameterized as:

P =

 a 1− a

1− b b

 , (E.14)

where a, b ∼ Unif([0, 1]). P is almost surely diagonalizable, and using its eigendecomposition, we

can calculate its n-th powers

Pn =
1

a+ b− 2

1 1−a
b−1

1 1


1 0

0 a+ b− 1


nb− 1 a− 1

1− b b− 1


=

1
a+ b− 2

(a− 1)(a+ b− 1)n + b− 1 (1− a)(a+ b− 1)n + a− 1

(1− b)(a+ b− 1)n + b− 1 (b− 1)(a+ b− 1)n + a− 1

 .

(E.15)

We observe that every element of the matrix, (Pn)ij, is of the form
βijλ

n+γij
λ−1 , with λ = a+ b− 1. It is

also π = 1
λ−1

(
b− 1 a− 1

)
(the normalized eigenvector that corresponds to λ). Thus, eq. (E.13)

can be written as

−∇WkExxx∼P [L|P ] = c
t(λ − 1)2

2∑
i=1

(
Pmi −

1
2

) t∑
p=1

p∑
t′=1

t′∑
s=1

(
βimλ

p−t′ + γim
)(

βliλ
t′−s + γli

)
πl

=
cπl

t(λ − 1)2

2∑
i=1

(
Pmi −

1
2

) t∑
p=1

p∑
t′=1

t′∑
s=1

βimβliλ
p−s︸ ︷︷ ︸

(A)

+ βimγliλ
p−t′︸ ︷︷ ︸

(B)

+ βliγimλ
t′−s︸ ︷︷ ︸

(C)

+ γimγli︸ ︷︷ ︸
(D)

 .

(E.16)
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We calculate the four terms separately:

(A) =
t∑

p=1

p∑
t′=1

t′∑
s=1

βimβliλ
p−s

= βimβli
t∑

p=1

p∑
t′=1

t′∑
s=1

λp−s

= βimβli
t∑

p=1

p∑
t′=1

λp−1 − λp−t′−1

1− λ−1

=
βimβli
1− λ−1

t∑
p=1

(
pλp−1 − λp−2 − λ−2

1− λ−1

)

=
βimβli
1− λ−1

(
1− (t+ 1)λt + tλt+1

(1− λ)2
− λ−1 − λt−1(

1− λ−1
)
(1− λ)

+ t
λ−2

1− λ−1

)

=
βimβli
λ − 1

(
λ − (t+ 1)λt+1 + tλt+2

(1− λ)2
− 1− λt(

1− λ−1
)
(1− λ)

+ t
1

λ − 1

)
.

(B) =
t∑

p=1

p∑
t′=1

t′∑
s=1

βimγliλ
p−t′

= βimγli
t∑

p=1

p∑
t′=1

t′∑
s=1

λp−t′

= βimγli
t∑

p=1

p∑
t′=1

t′λp−t′

= βimγli
t∑

p=1
λp−1

1− (p+ 1)λ−p + pλ−p−1

(1− λ−1)2

= βimγli
t∑

p=1

λp−1 − (p+ 1)λ−1 + pλ−2

(1− λ−1)2

=
βimγli

(1− λ−1)2

(
1− λt

1− λ
− λ−1

t(t+ 3)
2

+ λ−2
t(t+ 1)

2

)
=

βimγli
(λ − 1)2

(
λ2
1− λt

1− λ
− λ

t(t+ 3)
2

+
t(t+ 1)

2

)
.

(C) =
t∑

p=1

p∑
t′=1

t′∑
s=1

βliγimλ
t′−s

= βliγim
t∑

p=1

p∑
t′=1

t′∑
s=1

λt
′−s

= βliγim
t∑

p=1

p∑
t′=1

λt
′−1 − λ−1

1− λ−1

=
βliγim
1− λ−1

t∑
p=1

(
1− λp

1− λ
− λ−1p

)

=
βliγim
1− λ−1

(
t

1− λ
− λ − λt+1

(1− λ)2
− λ−1

t(t+ 1)
2

)
=

βliγim
λ − 1

(
t

λ
1− λ

− λ2 − λt+2

(1− λ)2
− t(t+ 1)

2

)
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(D) =

t∑
p=1

p∑
t′=1

t′∑
s=1

γimγli = γimγli
t(t+ 1)(t+ 2)

6
.

Plugging these expressions back into eq. (E.16), we get:

−∇WkExxx∼P [L|P ] =
cπl
(
Pm1 − 1

2
)

t(λ − 1)2

[
β1mβl1 − β2mβl2

λ − 1

(
λ − (t+ 1)λt+1 + tλt+2

(1− λ)2
− 1− λt(

1− λ−1
)
(1− λ)

+ t
1

λ − 1

)
︸ ︷︷ ︸

(I)

+
β1mγl1 − β2mγl2

(λ − 1)2

(
λ2
1− λt

1− λ
− λ

t(t+ 3)
2

+
t(t+ 1)

2

)
︸ ︷︷ ︸

(II)

+
βl1γ1m − βl2γ2m

λ − 1

(
t

λ
1− λ

− λ2 − λt+2

(1− λ)2
− t(t+ 1)

2

)
︸ ︷︷ ︸

(III)

+
(
γ1mγl1 − γ2mγl2

) t(t+ 1)(t+ 2)
6︸ ︷︷ ︸

(IV)

]
.

(E.17)

Finally, by taking expectation over a, b (the randomness of the transition matrix), we get for the

update ofWk with learning rate η:

(
W(1)

k

)
m,l

=
(
W(0)

k

)
m,l
− η∇WkEa,b [Exxx∼P [L|P ]] . (E.18)

We consider the 4 cases separately. Casem, l = 1, 1:

(
W(1)

k

)
1,1

= c+
ηc
t
Ea,b

[
(b− 1)(a− 1

2)

(λ − 1)3

[
(a− 1)(a− b)

λ − 1
(I) +

2(a− 1)(b− 1)
(λ − 1)2

(II)

+
2(a− 1)(b− 1)

λ − 1
(III) + (b− 1)(b− a)(IV)

]] (E.19)
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Casem, l = 1, 2:

(
W(1)

k

)
1,2

= c+
ηc
t
Ea,b

[
(a− 1)(a− 1

2)

(λ − 1)3

[
(1− b)(a− b)

λ − 1
(I) +

2(a− 1)(b− 1)
(λ − 1)2

(II)

−2(b− 1)2

λ − 1
(III) + (b− 1)(b− a)(IV)

]] (E.20)

Casem, l = 2, 1:

(
W(1)

k

)
2,1

= c+
ηc
t
Ea,b

[
(b− 1)( 12 − b)

(λ − 1)3

[
(1− a)(a− b)

λ − 1
(I)− 2(a− 1)(b− 1)

(λ − 1)2
(II)

+
2(a− 1)2

λ − 1
(III) + (a− 1)(b− a)(IV)

]] (E.21)

Casem, l = 2, 2:

(
W(1)

k

)
2,2

= c+
ηc
t
Ea,b

[
(a− 1)( 12 − b)

(λ − 1)3

[
(b− 1)(a− b)

λ − 1
(I)− 2(a− 1)(b− 1)

(λ − 1)2
(II)

−2(a− 1)(b− 1)
λ − 1

(III) + (a− 1)(b− a)(IV)
]] (E.22)

See Figure E.1 (left) for an empirical estimation for some choice of hyperparameters. We observe

that the gradient is symmetric, so it is going to be
(
W(1)

k

)
2,1

=
(
W(1)

k

)
1,2
, and the value in the

diagonal is the same, i.e.
(
W(1)

k

)
1,1

=
(
W(1)

k

)
2,2
.

By only focusing on the leading order terms, (IV), we have:

(
W(1)

k

)
m,l

= c+ cηEa,b

[
πmπl
(λ − 1)

(b− a)
(
Pm1 −

1
2

)]
(t+ 1)(t+ 2)

6
+ O(t). (E.23)
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A calculation then shows that

Ea,b

[
π1π1

(λ − 1)
(b− a)

(
P11 −

1
2

)]
= Ea,b

[
π2π2
(λ − 1)

(b− a)
(
P21 −

1
2

)]
=

∫ 1

0

∫ 1

0

(b− 1)2(b− a)(a− 1
2)

(a+ b− 2)3
dadb =

ln 256− 5
12

≈ 0.045,

(E.24)

and

Ea,b

[
π1π2

(λ − 1)
(b− a)

(
P11 −

1
2

)]
= Ea,b

[
π1π2

(λ − 1)
(b− a)

(
P21 −

1
2

)]
=

∫ 1

0

∫ 1

0

(b− 1)(a− 1)(b− a)(a− 1
2)

(a+ b− 2)3
dadb =

7− 10 ln 2
6

≈ 0.011,

(E.25)

hence the diagonal grows a constant (≈ 4) times more than the off-diagonal.

Similarly, for the expected gradient of v (with respect to xxx conditioned onP), we have:

E
[
∂f(e)p,i
∂vj

]
= cE

[ p∑
t′=1

1 {xt′ = i}
t′∑
s=1

δj(t′−s+1)1 {j ≤ p}

]

= cE

[ p∑
t′=1

1 {xt′ = i} 1
{
j ≤ t′

}
1 {j ≤ p}

]

= c
p∑

t′=j

P [xt′ = i] 1 {j ≤ p}

= cπi (p− j+ 1) 1 {j ≤ p} ,

(E.26)
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and

E
[
∂f(e)p,xp+1

∂vj

]
= c

p∑
t′=j

P
[
xt′ = xp+1

]
1 {j ≤ p}

= c
p∑

t′=j

k∑
i=1

P
[
xt′ = xp+1 = i

]
1 {j ≤ p}

= c
k∑

i=1

p∑
t′=j

P
[
xp+1 = i | xt′ = i

]
P [xt′ = i] 1 {j ≤ p}

= c
k∑

i=1
πi

p∑
t′=j

(
Pp+1−t′

)
ii
1 {j ≤ p}

= c
k∑

i=1

πi
λ − 1

p∑
t′=j

(
βiiλ

p+1−t′ + γii
)
1 {j ≤ p}

= c

 b− 1
(λ − 1)2

p∑
t′=j

(
(a− 1) λp+1−t′ + (b− 1)

)
+

a− 1
(λ − 1)2

p∑
t′=j

(
(b− 1) λp+1−t′ + (a− 1)

) 1 {j ≤ p}

= c
(
2
(a− 1)(b− 1)

(λ − 1)2
λp+1−j − 1
1− λ−1

+
(a− 1)2 + (b− 1)2

(λ − 1)2
(p− j+ 1)

)
1 {j ≤ p} .

(E.27)

Thus, the update would be:

v(1)j = v(0)j − η
∂L
∂vj

= v(0)j +
η
t

t∑
p=1

(
Ea,b

[
Exxx∼P

[
∂f(e)p,xp+1

∂vj

∣∣∣∣P]]− 1
k

k∑
i=1

Ea,b

[
Exxx∼P

[
∂f(e)p,xi
∂vj

∣∣∣∣P]]
)

= c+
cη
t

t∑
p=j

Ea,b

[
1

(λ − 1)2

((
(a− 1)2 + (b− 1)2

)
(p− j+ 1) + 2(a− 1)(b− 1)

λp−j+1 − 1
1− λ−1

)
− 1
2
(p− j+ 1)

]

= c+
cη
t
Ea,b

[
(t− j+ 1)(t− j+ 2)

2

(
(a− 1)2 + (b− 1)2

(λ − 1)2
− 1
2

)
+ 2λ

(a− 1)(b− 1)
(λ − 1)3

(
λ − λt−j+2

1− λ
− t+ j− 1

)]
.

(E.28)
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Figure E.1: Values ofWk and v after one step of stochastic gradient descent from eqs. (E.17),(E.28). Hyperparam‐
eters: initialization c = 0.02, learning rate η = 0.03, sequence length t = 100. The outer expectations are
approximated using 10,000 samples.

See Figure E.1 (right) for an empirical estimation for some choice of hyperparameters. As we did in

the case of the gradient ofWk, we focus on the leading order terms and we have:

v(1)j = c+
cη
t
(t− j+ 1)(t− j+ 2)

2
Ea,b

[
(a− 1)2 + (b− 1)2

(λ − 1)2
− 1
2

]
+ O(1), (E.29)

and, sinceEa,b

[
(a−1)2+(b−1)2

(λ−1)2

]
= 2− ln 4 > 1

2 , we get a positive bias with quadratic dependence.

Second step.We saw that we get a bias towards a diagonalWk after one update (E.23). Let

Wk = C′ + (ρ − c′)I, where C′ = c′11T and ρ > c′, with c′ denoting the off-diagonal term

and ρ the on-diagonal one. As in the first step, we can tune the margin parameter of the loss, Δ to be
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large enough, so that we operate on the linear part of the loss. We have for the gradient of v:

E
[
∂f(e)p,i
∂vj

]
= E

[ p∑
t′=1

1 {xt′ = i}
t′∑
s=1

δj(t′−s+1)

(
c′ + (ρ− c′)eTxpexs

)
1 {j ≤ p}

]

= E

[ p∑
t′=1

1 {xt′ = i} (c′ +
(
ρ− c′

)
eTxpext′−j+1

)1
{
j ≤ t′

}
1 {j ≤ p}

]

= E

 p∑
t′=j

1 {xt′ = i} (c′ +
(
ρ− c′

)
1
{
xt′−j+1 = xp

}
)1 {j ≤ p}


= c′πi (p− j+ 1) 1 {j ≤ p}+

(
ρ− c′

) p∑
t′=j

P
[
xt′ = i, xt′−j+1 = xp

]
1 {j ≤ p} .

(E.30)

We split the cases of j = 1 and j ≥ 2. For j = 1:

E
[
∂f(e)p,i
∂v1

]
= c′πip+

(
ρ− c′

) p∑
t′=1

P
[
xt′ = i = xp

]
= c′πip+

(
ρ− c′

) p∑
t′=1

(
Pp−t′

)
ii
πi

= c′πip+
(ρ− c′) πi
λ − 1

p∑
t′=1

(βiiλ
p−t′ + γii)

= c′πip+
(ρ− c′) πi
λ − 1

(
pγii + βii

λp − 1
λ − 1

)
.

(E.31)
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E
[
∂f(e)p,i
∂v1

]
= c′πi (p− j+ 1) 1 {j ≤ p}+

(
ρ− c′

) p∑
t′=j

2∑
l=1

P
[
xt′ = i, xt′−j+1 = xp = l

]
1 {j ≤ p}

= c′πi (p− j+ 1) 1 {j ≤ p}+
(
ρ− c′

) 2∑
l=1

p∑
t′=j

P
[
xp = l | xt′ = i

]
P
[
xt′ = i | xt′−j+1 = l

]
P
[
xt′−j+1 = l

]
1 {j ≤ p}

= c′πi (p− j+ 1) 1 {j ≤ p}+
(
ρ− c′

) 2∑
l=1

πl
p∑

t′=j

βilλ
p−t′ + γil
λ − 1

βliλ
j−1 + γli
λ − 1

1 {j ≤ p}

=

c′πi (p− j+ 1) +
(
ρ− c′

) 2∑
l=1

πl
(λ − 1)2

p∑
t′=j

(
βilβliλ

p−t′+j−1 + βilγliλ
p−t′ + γilβliλ

j−1 + γilγli
) 1 {j ≤ p}

= c′πi (p− j+ 1) 1 {j ≤ p}

+
(ρ− c′)
(λ − 1)2

2∑
l=1

πl
(
βilβli

λp − λj−1

λ − 1
+ βilγli

λp−j+1 − 1
λ − 1

+ (p− j+ 1)
(
γilβliλ

j−1 + γilγli
))

1 {j ≤ p} .

(E.32)

and, similarly, for the derivative of the ground truth logit:

E
[
∂f(e)p,xp+1

∂vj

]
= c′

p∑
t′=j

P
[
xt′ = xp+1

]
1 {j ≤ p}+

(
ρ− c′

) p∑
t′=j

P
[
xt′ = xp+1, xt′−j+1 = xp

]
1 {j ≤ p} .

(E.33)

The first term corresponds to the gradient of the first step and can be found in eq. (E.27). For the

second term, we have for j = 1:

p∑
t′=1

P
[
xt′ = xp+1 = xp

]
=

2∑
i=1

p∑
t′=1

P
[
xp+1 = i | xp = i

]
P
[
xp = i | xt′ = i

]
P [xt′ = i]

=

2∑
i=1

πiPii
λ − 1

(
βii

λp − 1
λ − 1

+ γiip
)
,

(E.34)

352



and for j ≥ 2:

p∑
t′=j

P
[
xt′ = xp+1, xt′−j+1 = xp

]
=

2∑
i=1

2∑
l=1

p∑
t′=j

PliP
[
xp = l | xt′ = i

]
P
[
xt′ = i | xt′−j+1 = l

]
P
[
xt′−j+1 = l

]
,

(E.35)

which, by using the calculations of eq. (E.32), amounts to:

1
(λ − 1)2

2∑
i=1

2∑
l=1

πlPli
(
βilβli

λp − λj−1

λ − 1
+ βilγli

λp−j+1 − 1
λ − 1

+ (p− j+ 1)
(
γilβliλ

j−1 + γilγli
))

1 {j ≤ p} .

(E.36)

Thus, the updates will have a gradient contribution that is the same as the first step, ∂L0

∂vj , and

another one that comes from the diagonal bias ofWk.

For j = 1:

v(2)1 = v(1)1 − η
∂L
∂v1

= v(1)1 − ηc′
∂L0

∂v1
+

η (ρ− c′)
t

t∑
p=1

2∑
i=1

Ea,b

[(
Pii −

1
2

)
πi

λ − 1

(
βii

λp − 1
λ − 1

+ γiip
)]

= v(1)1 − ηc′
∂L0

∂v1
+

η (ρ− c′)
t

Ea,b

[(
λ − λt+1

1− λ
− t
)

(a− 1)(b− 1)
(λ − 1)2

+

(
(b− 1)2(a− 1

2) + (a− 1)2(b− 1
2)

(λ − 1)2

)
t(t+ 1)

2

]
.

(E.37)
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Figure E.2: Empirical estimation of the 2nd step gradient of v that comes from the diagonal bias ofWk ‐ see
eqs. (E.37),(E.38). Hyperparameters: initialization c = 0.02, learning rate η = 0.03, sequence length t = 100. The
outer expectations are approximated using 10,000 samples.

For j ≥ 2:

v(2)j = v(1)j − η
∂L
∂vj

= v(1)1 − ηc′
∂L0

∂vj
+

η (ρ− c′)
t

2∑
i=1

2∑
l=1

Ea,b

[
πl

(λ − 1)2

(
Pli −

1
2

)[
βilβli
λ − 1

(
λj − λt+1

1− λ
− (t− j+ 1)λj−1

)

+
βilγli
λ − 1

(
λ − λt−j+2

λ − 1
− t+ j− 1

)
+

(t− j+ 1)(t− j+ 2)
2

(
γilβliλ

j−1 + γilγli
) ]]

.

(E.38)

See Figure E.2 for an empirical estimation of the diagonal contribution of the gradient for some

choice of hyperparameters. In leading order terms, the updates simplify to:
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For j = 1:

v(2)1 = v(1)1 − ηc′
∂L0

∂v1
+

η (ρ− c′)
t

Ea,b

[
(b− 1)2(a− 1

2) + (a− 1)2(b− 1
2)

(λ − 1)2

]
t(t+ 1)

2
+ O(1).

(E.39)

For j ≥ 2:

v(2)j = v(1)j − ηc′
∂L0

∂vj
+

η (ρ− c′)
t

(t− j+ 1)(t− j+ 2)
2

Ea,b

[
2
(a− 1)(b− 1)

(
(b− 1)

(
a− 1

2
)
+ (a− 1)

(
b− 1

2
))

(λ − 1)3
λj−1

+
(b− a)

(
(b− 1)2

(
a− 1

2
)
− (a− 1)2

(
b− 1

2
))

(λ − 1)3

]
+ O(1),

(E.40)

where for all j it is:

v(1)j − ηc′
∂L0

∂vj
= c+

(c+ c′)η
t

(t− j+ 1)(t− j+ 2)
2

Ea,b

[
(a− 1)2 + (b− 1)2

(λ − 1)2
− 1
2

]
+ O(1).

(E.41)

We now show that v(2)2 > v(2)1 in the large t regime. Observe that the term of (E.41) is the same

for j = 1, 2. We evaluate the expectation of eq. (E.39) that corresponds to j = 1:

Ea,b

[
(b− 1)2(a− 1

2) + (a− 1)2(b− 1
2)

(λ − 1)2

]
=

1− ln 2
3

(E.42)

and the expectation of (E.40), leveraging symmetry of a, b in the expression, that corresponds to

j = 2:

4Ea,b

[
(a− 1)(b− 1)2(a− 1

2)

(a+ b− 2)3
(a+ b− 1)

]
+2Ea,b

[
(b− a)(b− 1)2(a− 1

2)

(a+ b− 2)3

]
=

7− 10 ln 2
2

+
5− 8 ln 2

6
.

(E.43)

The latter term is larger, so, when t → ∞, it is v(2)2 > v(2)1 . Finally, observe that the expectation

Ea,b

[
(a−1)(b−1)2(a− 1

2 )

(a+b−2)3 (a+ b− 1)j−1
]
is negative for j odd and decreasing otherwise, which shows
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that v(2)2 > v(2)j , j > 2. So, we showed that the 2nd coordinate grows larger than the rest after the

2nd step.

With this calculation at hand, we can ask questions about the optimization trajectory and how

that would change if we alter the data distribution. In particular, in the following Corollary, we

answer the question of how the gradient would change when a = b, i.e., when the transition matrix

is

P =

 a 1− a

1− a a

 , (E.44)

with a ∼ Unif([0, 1]). Notice that in the case there is not a unigrams solution (or in other words the

unigrams solution is as good as the uniformly at random solution).

Corollary E.2. When a = b, it is

W(1)
k =

c c

c c

+ cη

O(t)
∞ 0

0 ∞

+ O(1)

 ,

v(1)j = c− cη
2t

(t− j+ 1) + O(1/t), j ∈ [t].

(E.45)

Proof. We first compute the gradient with respect toWk, by setting a = b in eq. (E.19),(E.20). For

m, l = 1, 1, we have:

(
W(1)

k

)
1,1

= c+
ηc
t
Ea∼Unif([0,1])

[
(a− 1)(a− 1

2)

(2a− 2)3

[
2(a− 1)2

(2a− 2)2
(II) +

2(a− 1)2

2a− 2
(III)

]]
, (E.46)

where (II), (III) are defined in eq. (E.23). Notice that the (IV)with the cubic,O(t3), dependence

disappeared, so the leading order terms areO(t2). By substituting the leading order terms from
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(II), (III), we get:

(
W(1)

k

)
1,1

= c+
ηc
t
Ea∼Unif([0,1])

[
(a− 1)(a− 1

2)

(2a− 2)3

[
2(a− 1)2

(2a− 2)2
2− 2a
2
− 2(a− 1)2

2a− 2
1
2

]]
O(t2)

= c+ ηcEa∼Unif([0,1])

[
−

(a− 1
2)

8(a− 1)

]
O(t)→∞.

(E.47)

Form, l = 1, 2, theO(t3) terms similarly disappear, and we have:

(
W(1)

k

)
1,2

= c+
ηc
t
Ea∼Unif([0,1])

[
(a− 1)(a− 1

2)

(2a− 2)3

[
2(a− 1)2

(2a− 2)2
(II)− 2(a− 1)2

2a− 2
(III)

]]

= c+
ηc
t
Ea∼Unif([0,1])

[
(a− 1)(a− 1

2)

(2a− 2)3

[
2(a− 1)2

(2a− 2)2
2− 2a
2

+
2(a− 1)2

2a− 2
1
2

]]
O(t2)

= c.

(E.48)

Now, for the v vector, we observe that when we set a = b in eq. (E.28), the leading term disappears

and its expression simplifies to:

v(1)j = c− cη
t
Ea∼Unif([0,1])

[
2(2a− 2)

(a− 1)2

(2a− 2)3
(t− j+ 1)

]
+ O(1/t)

= c− cη
2t

(t− j+ 1) + O(1/t).
(E.49)

The previous calculations reveal that there is less “signal” towards the unigrams solution when

a = b.

Finally, we provide our main technical result that demonstrates that two steps of stochastic gradi-

ent descent lead the model to the bigrams solution.
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Proposition E.3. Suppose we initialize the model of eq. (E.2) withW(0)
k = winit11T and v = vinit1T.

Consider a two step procedure, where we first train with gradient descent on the original distribution

a ∼ Unif(0, 1), b ∼ Unif(0, 1), and then at the second step with a = b ∼ Unif([ 12 − ε, 12 + ε]),

ε ∈ (0, 1/2). Let η1 = O
( 1
t2
)
and η2 = O

( 1
t
)
be the learning rates for the 1st and 2nd step of

gradient descent, and let λwd = 1 be the weight decay coefficient used in the second step. Then, after 2

steps of gradient descent, for t→∞, it is:

f(e)p,i = O(ε4)
p∑

t′=1

1 {xt′ = i} 1
{
xp = xt′−1

}
+ O(ε6). (E.50)

Proof. For the first step, we have from Lemma 1:

W(1)
k = winit11T + vinitη1

B A

A B

O(t2) + vinitη1O(t). (E.51)

For η1 = O
( 1
t2
)
, then

W(1)
k = winit11T +

B A

A B

O(1) + O(1/t). (E.52)

Recall, from Lemma 1, that we have v(1)j = vinit + η1winitO(t) for all j ∈ [t], so, for η1 = O
( 1
t2
)
, it

will be v(1)j = vinit for all j ∈ [t].

Assume now that at the second step we train with weight decay λwd = 1 and the data distribution

changes to a = b ∼ Unif([ 12 − ε, 12 + ε]). Then, from eq. (E.47)* the update of the 2nd layer would

*That equation refers to the first step of gradient descent for a = b, but notice that since the model is lin-
ear inWk, and in this case v

(1)
j = vinit, it characterizes the 2nd step too.
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be:

W(2)
k = (1− λwd)W

(1)
k − η2∇L

= vinitη2


∫ 1

2+ε
1
2−ε

a− 1
2

(a−1) 0

0
∫ 1

2+ε
1
2−ε

a− 1
2

(a−1)

O(t) + O(1)

= vinitη2

2ε+ 1
2 ln
( 1

2−ε
1
2+ε

)
0

0 2ε+ 1
2 ln
( 1

2−ε
1
2+ε

)
O(t) + O(1).

(E.53)

For the update of vwe have:

v(2)j = (1− λwd)v
(1)
j −

∂L
∂vj

= η2A
∂Lconst
∂vj

+ η23A
∂Ldiag
∂vj

= A
η2ρ
t

(
(t− j+ 1)(t− j+ 2)

2

(
(a− 1)2 + (b− 1)2

(λ − 1)2
− 1
2

)
+ O(t)

)
+ 3Aη2

∂Ldiag
∂vj

.

(E.54)

For a = b, it is only theO(t) part inside the parenthesis that survives from the second term (see

eq. (E.49)) and by substituting the diagonal gradient from eqs. (E.39),(E.40) when a = b, we get for

all j ∈ [t]:

vj = η2ρAO(1) + 3A
η2
t
(t− j+ 1)(t− j+ 2)

2
2Ea∼Unif([1/2−ε,1/2+ε])

[
a− 1/2

4
(2a− 1)j−1

]
+ 3A

η2
t
O(t).

(E.55)

We calculate the expectation:

Ea∼Unif([1/2−ε,1/2+ε])

[
a− 1/2

4
(2a− 1)j−1

]
= 0, (E.56)
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when j = 1. For j ≥ 2:

Ea∼Unif([1/2−ε,1/2+ε])
[
(a− 1/2)(2a− 1)j−1

]
=

∫ 1/2+ε

1/2−ε
(a− 1/2)(2a− 1)j−1

=
1
2j

[
(2a− 1)j(a− 1

2
)

]1/2+ε

1/2−ε
− 1
2j

∫ 1/2+ε

1/2−ε
(2a− 1)jda

=
1
2j
ε
(
(2ε)j + (−2ε)j

)
− 1
4j(j+ 1)

(
(2ε)j+1 − (−2ε)j+1

)
.

(E.57)

For j = 2k+ 1, this equals to 0. For j = 2k, it is equal to 4k
2k+1 ε

2k+1.

Thus, by setting η2 = O
( 1
t
)
, we get:

W(2)
k = O(ε)

1 0

0 1

+ O
(
1
t

)
. (E.58)

vj = vinit + O
(
(t− j+ 1)(t− j+ 2)

t2

) t∑
s=1,s=2k

δ(s− j)εj+1 + O
(
1
t

)
, (E.59)

where δ is Dirac’s delta function.

Thus, after 2 steps of gradient descent, as t→∞, the prediction of the model will be

f(e)p,i = O(ε4)
p∑

t′=1

1 {xt′ = i} 1
{
xp = xt′−1

}
+ O(ε6). (E.60)

An interesting observation that stems from the proof is that the learning rate of the first step is

O(1/t2), where recall t is the sequence length, while for the second step the learning rate isO(1/t)

(much larger). The first step in our proof corresponds to the learning of the second layerWk, while

the second step “cleans up”Wk and learns the first layer v. Interestingly, this is what we also observe
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Figure E.3: In distribution test loss for 10 two layer attention only transformers, with random seeds 0, 1, . . . 9 (random‐
ness affects initialization and the training data). The training dynamics are consistent for each model, though the exact
position of the phase transitions.

in the experiments with the transformers and this minimal model: the first drop is immediate for the

learning of the 2nd layer, while the second loss drop happens after a long plateau and corresponds to

the “grokking” of the positional embeddings.

E.2 Experimental Details

We train transformers of the form (8.4) with the AdamW optimizer with learning rate 3e− 5, batch

size 64, and hidden dimension 16. The sequence length of the examples is 100 tokens. The minimal

model was trained with SGD, with batch size 64, and learning rate 2e − 3. For 3-grams, a learning

rate of 3e − 2 was used. We use PyTorch 2.1.2. Some of the training and model code was based on

minGPT Karpathy (2023).

The experiments all measure the outputs of the models at the last token.

E.3 Additional Experiments
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Figure E.4: Our results extend to more symbols than k = 2 or k = 3. The KL‐divergence between the transformer and
strategies over training. This required a sequence length greater than 100 (200 in this case) for the difference between
unigrams and bigrams to be large enough for the unigram phase to be visible (in either case there was a plateau before
the final drop in test loss).
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Figure E.5: A two layer attention‐only transformer was trained with cross entropy loss on ICL‐MC. The heatmaps on the
right represent part of the attention for the transformer at various time steps, specifically the value ofA from (8.5). The
top row are showing A from the first layer, and the bottom row from the second layer.
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Figure E.6: A two layer attention‐only transformer (top) and minimal model (8.8) (bottom), trained on the main task
with ICL‐MC with cross entropy loss, test loss measured by KL‐Divergence from the underlying truth (labels based on
transition probabilities, not samples). The distributions test loss is measured in are (from left to right) in‐distribution,
a distribution where each token is sampled iid, and a distribution over uniformly random doubly stochastic transition
matrices (equivalently, stationary distribution is identity, or unigram based guesses are as good as guessing uniform
probability). For both models, the in distribution test loss quickly drops to the level of the unigram algorithm.
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Figure E.7: A comparison of the two layer attention only transformer and minimal model for k = 2 symbols. Note the
alternating pattern in the positional encodings at 64,000 examples seen.
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Figure E.8: Graphs of test loss showing that a single layer transformer can not achieve good performance on ICL‐MC.
This result holds for transformers with or without MLPs, and with absolute or relative positional encodings. These
graphs show that even trained 8 times longer, there is no notable increase in performance beyond the unigrams strategy
(orange line).

364



References

Abbe, E., Adsera, E. B., &Misiakiewicz, T. (2022a). The merged-staircase property: a necessary
and nearly sufficient condition for sgd learning of sparse functions on two-layer neural networks.
In Conference on Learning Theory (pp. 4782–4887).: PMLR.

Abbe, E., Adsera, E. B., &Misiakiewicz, T. (2023). Sgd learning on neural networks: leap com-
plexity and saddle-to-saddle dynamics. In The Thirty Sixth Annual Conference on Learning Theory
(pp. 2552–2623).: PMLR.

Abbe, E., Cornacchia, E., Hązła, J., &Marquis, C. (2022b). An initial alignment between neural
network and target is needed for gradient descent to learn. arXiv preprint arXiv:2202.12846.

Abbe, E., Kamath, P., Malach, E., Sandon, C., & Srebro, N. (2021). On the power of differentiable
learning versus PAC and SQ learning. Advances in Neural Information Processing Systems, 34.

Abbe, E. & Sandon, C. (2020). Poly-time universality and limitations of deep learning. arXiv
preprint arXiv:2001.02992.

Abernethy, J. D., Agarwal, A., Marinov, T. V., &Warmuth, M. K. (2023). A mechanism for
sample-efficient in-context learning for sparse retrieval tasks. CoRR, abs/2305.17040.

Agarwal, N., Anil, R., Hazan, E., Koren, T., & Zhang, C. (2020). Disentangling adaptive gradient
methods from learning rates. arXiv preprint arXiv:2002.11803.

Akyürek, E., Schuurmans, D., Andreas, J., Ma, T., & Zhou, D. (2022). What learning algorithm is
in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661.

Akyürek, E., Wang, B., Kim, Y., & Andreas, J. (2024). In-context language learning: Architectures
and algorithms. CoRR, abs/2401.12973.

Akyürek, E., Wang, B., Kim, Y., & Andreas, J. (2024). In-context language learning: Arhitectures
and algorithms. arXiv preprint arXiv:2401.12973.

Alekhnovich, M. (2003). More on average case vs approximation complexity. In 44th Annual
IEEE Symposium on Foundations of Computer Science, 2003. Proceedings. (pp. 298–307).: IEEE.

365



Allen-Zhu, Z. & Li, Y. (2019). What can ResNet learn efficiently, going beyond kernels? Advances
in Neural Information Processing Systems, 32.

Allen-Zhu, Z., Li, Y., & Song, Z. (2019). A convergence theory for deep learning via over-
parameterization. In International Conference onMachine Learning (pp. 242–252).: PMLR.

Andoni, A., Panigrahy, R., Valiant, G., & Zhang, L. (2014). Learning polynomials with neural
networks. In International Conference onMachine Learning (pp. 1908–1916).: PMLR.

Anil, C., Wu, Y., Andreassen, A., Lewkowycz, A., Misra, V., Ramasesh, V., Slone, A., Gur-Ari,
G., Dyer, E., & Neyshabur, B. (2022). Exploring length generalization in large language models.
Advances in Neural Information Processing Systems, 35, 38546–38556.

Anthony, M. & Bartlett, P. L. (1999). Neural network learning: Theoretical foundations, volume 9.
cambridge university press Cambridge.

Applebaum, B., Barak, B., &Wigderson, A. (2010). Public-key cryptography from different as-
sumptions. In Proceedings of the forty-second ACM symposium on Theory of computing (pp. 171–
180).

Applebaum, B., Cash, D., Peikert, C., & Sahai, A. (2009). Fast cryptographic primitives and
circular-secure encryption based on hard learning problems. In Annual International Cryptol-
ogy Conference (pp. 595–618).: Springer.

Arora, S. & Barak, B. (2009). Computational complexity: a modern approach. Cambridge Univer-
sity Press.

Arous, G. B., Gheissari, R., & Jagannath, A. (2021). Online stochastic gradient descent on non-
convex losses from high-dimensional inference. J. Mach. Learn. Res., 22, 106–1.

Arpit, D., Jastrzebski, S., Ballas, N., Krueger, D., Bengio, E., Kanwal, M. S., Maharaj, T., Fischer,
A., Courville, A., Bengio, Y., et al. (2017). A closer look at memorization in deep networks. In
International conference on machine learning (pp. 233–242).: PMLR.

Ba, J., Erdogdu, M. A., Suzuki, T., Wang, Z., Wu, D., & Yang, G. (2022). High-dimensional
asymptotics of feature learning: How one gradient step improves the representation. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, & A. Oh (Eds.), Advances in Neural Informa-
tion Processing Systems 35: Annual Conference on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022.

Ba, J. L., Kiros, J. R., &Hinton, G. E. (2016). Layer normalization. arXiv preprint
arXiv:1607.06450.

Bachmann, G., Anagnostidis, S., & Hofmann, T. (2023). Scaling mlps: A tale of inductive bias.
arXiv preprint arXiv:2306.13575.

366



Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473.

Bahri, Y., Dyer, E., Kaplan, J., Lee, J., & Sharma, U. (2021). Explaining neural scaling laws. arXiv
preprint arXiv:2102.06701.

Barak, B., Edelman, B., Goel, S., Kakade, S., Malach, E., & Zhang, C. (2022). Hidden progress in
deep learning: Sgd learns parities near the computational limit. Advances in Neural Information
Processing Systems, 35, 21750–21764.

Bartlett, P. (1996). For valid generalization the size of the weights is more important than the size
of the network. Advances in neural information processing systems, 9.

Bartlett, P. L., Foster, D. J., & Telgarsky, M. J. (2017). Spectrally-normalized margin bounds for
neural networks. Advances in neural information processing systems, 30.

Bartlett, P. L. &Mendelson, S. (2002). Rademacher and gaussian complexities: Risk bounds and
structural results. Journal ofMachine Learning Research, 3, 463–482.

Baur, W. & Strassen, V. (1983). The complexity of partial derivatives. Theoretical computer science,
22(3), 317–330.

Baxter, R. J. (2016). Exactly solved models in statistical mechanics. Elsevier.

Belilovsky, E., Eickenberg, M., & Oyallon, E. (2019). Greedy layerwise learning can scale to ima-
genet. In International conference on machine learning (pp. 583–593).: PMLR.

Belkin, M., Hsu, D., Ma, S., &Mandal, S. (2019). Reconciling modern machine-learning practice
and the classical bias–variance trade-off. Proceedings of the National Academy of Sciences, 116(32),
15849–15854.

Belkin, M., Ma, S., &Mandal, S. (2018). To understand deep learning we need to understand
kernel learning. In International Conference onMachine Learning (pp. 541–549).: PMLR.

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new per-
spectives. IEEE transactions on pattern analysis and machine intelligence, 35(8), 1798–1828.

Bengio, Y., Louradour, J., Collobert, R., &Weston, J. (2009). Curriculum learning. In A. P.
Danyluk, L. Bottou, &M. L. Littman (Eds.), Proceedings of the 26th Annual International Con-
ference onMachine Learning, ICML 2009,Montreal, Quebec, Canada, June 14-18, 2009, volume
382 of ACM International Conference Proceeding Series (pp. 41–48).: ACM.

Berry, A. C. (1941). The accuracy of the gaussian approximation to the sum of independent vari-
ates. Transactions of the AmericanMathematical Society, 49(1), 122–136.

367



Bhattamishra, S., Ahuja, K., & Goyal, N. (2020a). On the ability and limitations of transformers
to recognize formal languages. arXiv preprint arXiv:2009.11264.

Bhattamishra, S., Patel, A., & Goyal, N. (2020b). On the computational power of transformers
and its implications in sequence modeling. arXiv preprint arXiv:2006.09286.

Bietti, A., Bruna, J., Sanford, C., & Song, M. J. (2022). Learning single-index models with shallow
neural networks. Advances in Neural Information Processing Systems, 35, 9768–9783.

Bietti, A., Cabannes, V., Bouchacourt, D., Jegou, H., & Bottou, L. (2023). Birth of a transformer:
A memory viewpoint.

Blum, A., Furst, M., Jackson, J., Kearns, M., Mansour, Y., & Rudich, S. (1994). Weakly learning
dnf and characterizing statistical query learning using fourier analysis. In Proceedings of the twenty-
sixth annual ACM symposium on Theory of computing (pp. 253–262).

Blum, A., Kalai, A., &Wasserman, H. (2003). Noise-tolerant learning, the parity problem, and the
statistical query model. Journal of the ACM (JACM), 50(4), 506–519.

Blum, A. L. & Langley, P. (1997). Selection of relevant features and examples in machine learning.
Artificial intelligence, 97(1-2), 245–271.

Bogdanov, A., Sabin, M., & Vasudevan, P. N. (2019). Xor codes and sparse learning parity with
noise. Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, (pp.
986–1004).

Bogdanov, A., Trevisan, L., et al. (2006). Average-case complexity. Foundations and Trends® in
Theoretical Computer Science, 2(1), 1–106.

Bordelon, B., Atanasov, A., & Pehlevan, C. (2024). A dynamical model of neural scaling laws.
arXiv preprint arXiv:2402.01092.

Bordelon, B., Canatar, A., & Pehlevan, C. (2020). Spectrum dependent learning curves in kernel
regression and wide neural networks. In International Conference onMachine Learning (pp.
1024–1034).: PMLR.

Bordenave, C., Caputo, P., & Chafai, D. (2008). Circular law theorem for randommarkov matri-
ces. Probability Theory and Related Fields, 152.

Borisov, V., Leemann, T., Seßler, K., Haug, J., Pawelczyk, M., & Kasneci, G. (2022). Deep neu-
ral networks and tabular data: A survey. IEEE Transactions on Neural Networks and Learning
Systems.

Boyd, S. & Vandenberghe, L. (2004). Convex optimization. Cambridge university press.

Breiman, L. (2001). Random forests. Machine learning, 45, 5–32.

368



Bronstein, I., Brutzkus, A., & Globerson, A. (2022). On the inductive bias of neural networks for
learning read-once dnfs. InUncertainty in Artificial Intelligence (pp. 255–265).: PMLR.

Brown, P. F., deSouza, P. V., Mercer, R. L., Pietra, V. J. D., & Lai, J. C. (1992). Class-based n-gram
models of natural language. Comput. Linguist., 18(4), 467–479.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners. arXiv
preprint arXiv:2005.14165.

Cammarata, N., Goh, G., Carter, S., Schubert, L., Petrov, M., & Olah, C. (2020). Curve detectors.
Distill, 5(6), e00024–003.

Cao, Y., Fang, Z., Wu, Y., Zhou, D.-X., & Gu, Q. (2019). Towards understanding the spectral bias
of deep learning. arXiv preprint arXiv:1912.01198.

Chan, S., Santoro, A., Lampinen, A., Wang, J., Singh, A., Richemond, P., McClelland, J., & Hill,
F. (2022). Data distributional properties drive emergent in-context learning in transformers.
Advances in Neural Information Processing Systems, 35, 18878–18891.

Chen, A., Shwartz-Ziv, R., Cho, K., Leavitt, M. L., & Saphra, N. (2023). Sudden drops in the loss:
Syntax acquisition, phase transitions, and simplicity bias in mlms.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A., Laskin, M., Abbeel, P., Srinivas, A., &Mor-
datch, I. (2021a). Decision transformer: Reinforcement learning via sequence modeling. arXiv
preprint arXiv:2106.01345.

Chen, M., Li, X., & Zhao, T. (2019). On generalization bounds of a family of recurrent neural
networks. arXiv preprint arXiv:1910.12947.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Ponde, H., Kaplan, J., Edwards, H., Burda, Y., Joseph,
N., Brockman, G., et al. (2021b). Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374.

Chen, S. &Meka, R. (2020). Learning polynomials in few relevant dimensions. In Conference on
Learning Theory (pp. 1161–1227).: PMLR.

Chen, T. & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785–794).

Chizat, L. & Bach, F. (2020). Implicit bias of gradient descent for wide two-layer neural networks
trained with the logistic loss.

Chizat, L., Oyallon, E., & Bach, F. (2019). On lazy training in differentiable programming. Ad-
vances in neural information processing systems, 32.

369



Chomsky, N. (1956). Three models for the description of language. IRE Transactions on informa-
tion theory, 2(3), 113–124.

Choromanski, K., Likhosherstov, V., Dohan, D., Song, X., Gane, A., Sarlos, T., Hawkins, P.,
Davis, J., Mohiuddin, A., Kaiser, L., et al. (2020). Rethinking attention with performers. arXiv
preprint arXiv:2009.14794.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P., Chung,
H. W., Sutton, C., Gehrmann, S., et al. (2022). Palm: Scaling language modeling with pathways.
arXiv preprint arXiv:2204.02311.

Chughtai, B., Chan, L., & Nanda, N. (2023). A toy model of universality: Reverse engineering
how networks learn group operations. arXiv preprint arXiv:2302.03025.

Clark, K., Khandelwal, U., Levy, O., &Manning, C. D. (2019). What does bert look at? an anal-
ysis of bert’s attention. In Proceedings of the 2019 ACLWorkshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP (pp. 276–286).

Corsi, A. K., Wightman, B., & Chalfie, M. (2015). A transparent window into biology: a primer
on caenorhabditis elegans. Genetics, 200(2), 387–407.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of
control, signals and systems, 2(4), 303–314.

Dai, D., Sun, Y., Dong, L., Hao, Y., Sui, Z., &Wei, F. (2022). Why can gpt learn in-context?
language models secretly perform gradient descent as meta optimizers. arXiv preprint
arXiv:2212.10559.

Damian, A., Lee, J., & Soltanolkotabi, M. (2022). Neural networks can learn representations with
gradient descent. In Conference on Learning Theory (pp. 5413–5452).: PMLR.

Damian, A., Nichani, E., Ge, R., & Lee, J. D. (2023). Smoothing the landscape boosts the
signal for sgd: Optimal sample complexity for learning single index models. arXiv preprint
arXiv:2305.10633.

Daniely, A. &Malach, E. (2020). Learning parities with neural networks. Advances in Neural
Information Processing Systems, 33.

d’Ascoli, S., Touvron, H., Leavitt, M., Morcos, A., Biroli, G., & Sagun, L. (2021). Convit: Improv-
ing vision transformers with soft convolutional inductive biases. arXiv preprint arXiv:2103.10697.

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., & Kaiser, Ł. (2018). Universal transformers.
arXiv preprint arXiv:1807.03819.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805.

370



Diakonikolas, I., Goel, S., Karmalkar, S., Klivans, A. R., & Soltanolkotabi, M. (2020). Approxima-
tion schemes for relu regression. In Conference on Learning Theory (pp. 1452–1485).: PMLR.

Dong, Q., Li, L., Dai, D., Zheng, C., Wu, Z., Chang, B., Sun, X., Xu, J., & Sui, Z. (2022). A survey
for in-context learning. arXiv preprint arXiv:2301.00234.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,
M., Minderer, M., Heigold, G., Gelly, S., et al. (2020). An image is worth 16x16 words: Trans-
formers for image recognition at scale. In International Conference on Learning Representations.

Du, S. S., Zhai, X., Poczos, B., & Singh, A. (2018). Gradient descent provably optimizes over-
parameterized neural networks. arXiv preprint arXiv:1810.02054.

Dudley, R. M. (1967). The sizes of compact subsets of hilbert space and continuity of gaussian
processes. Journal of Functional Analysis, 1(3), 290–330.

Edelman, B., Goel, S., Kakade, S., Malach, E., & Zhang, C. (2024a). Pareto frontiers in deep fea-
ture learning: Data, compute, width, and luck. Advances in Neural Information Processing Sys-
tems, 36.

Edelman, B. L., Edelman, E., Goel, S., Malach, E., & Tsilivis, N. (2024b). The evolution of statisti-
cal induction heads: In-context learning markov chains. arXiv preprint arXiv:2402.11004.

Edelman, B. L., Goel, S., Kakade, S., & Zhang, C. (2022). Inductive biases and variable creation in
self-attention mechanisms. In International Conference onMachine Learning (pp. 5793–5831).:
PMLR.

Elhage, N., Hume, T., Olsson, C., Schiefer, N., Henighan, T., Kravec, S., Hatfield-Dodds, Z.,
Lasenby, R., Drain, D., Chen, C., et al. (2022). Toy models of superposition. arXiv preprint
arXiv:2209.10652.

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph, N., Mann, B., Askell, A., Bai, Y., Chen,
A., Conerly, T., et al. (2021). A mathematical framework for transformer circuits. Transformer
Circuits Thread, 1.

Engel, A. & Van den Broeck, C. (2001). Statistical mechanics of learning. Cambridge University
Press.

Esseen, C.-G. (1942). On the Liapunov limit error in the theory of probability. Ark.Mat. Astr.
Fys., 28, 1–19.

Feldman, V. (2008). Evolvability from learning algorithms. In Proceedings of the fortieth annual
ACM symposium on Theory of computing (pp. 619–628).

371



Feldman, V., Guzman, C., & Vempala, S. (2017). Statistical query algorithms for mean vector
estimation and stochastic convex optimization. In Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms (pp. 1265–1277).: SIAM.

Frankle, J. & Carbin, M. (2018). The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635.

Frei, S., Cao, Y., & Gu, Q. (2020). Agnostic learning of a single neuron with gradient descent.
Advances in Neural Information Processing Systems, 33, 5417–5428.

Frei, S., Chatterji, N. S., & Bartlett, P. L. (2022a). Random feature amplification: Feature learning
and generalization in neural networks. arXiv preprint arXiv:2202.07626.

Frei, S., Vardi, G., Bartlett, P., & Srebro, N. (2023). Benign overfitting in linear classifiers and
leaky relu networks from kkt conditions for margin maximization. In The Thirty Sixth Annual
Conference on Learning Theory (pp. 3173–3228).: PMLR.

Frei, S., Vardi, G., Bartlett, P., Srebro, N., &Hu, W. (2022b). Implicit bias in leaky relu networks
trained on high-dimensional data. In The Eleventh International Conference on Learning Represen-
tations.

Friedman, D., Wettig, A., & Chen, D. (2024). Learning transformer programs. Advances in Neural
Information Processing Systems, 36.

Gabaix, X. & Laibson, D. (2008). The seven properties of good models. The foundations of positive
and normative economics: A handbook, (pp. 292–319).

Gardner, E. & Derrida, B. (1989). Three unfinished works on the optimal storage capacity of
networks. Journal of Physics A:Mathematical and General, 22(12), 1983.

Garg, S., Tsipras, D., Liang, P., & Valiant, G. (2022). What can transformers learn in-context?
A case study of simple function classes. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K.
Cho, & A. Oh (Eds.), Advances in Neural Information Processing Systems 35: Annual Conference
on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November
28 - December 9, 2022.

Gilbert, N. (2019). Agent-based models. Sage Publications.

Glasgow, M. (2023). Sgd finds then tunes features in two-layer neural networks with near-optimal
sample complexity: A case study in the xor problem. In The Twelfth International Conference on
Learning Representations.

Glorot, X. & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics (pp. 249–256).: JMLRWorkshop and Conference Proceedings.

372



Goel, S., Karmalkar, S., & Klivans, A. (2019). Time/accuracy tradeoffs for learning a ReLU with
respect to Gaussian marginals. Advances in Neural Information Processing Systems, 32.

Goldreich, O. & Levin, L. A. (1989). A hard-core predicate for all one-way functions. In Proceed-
ings of the twenty-first annual ACM symposium on Theory of computing (pp. 25–32).

Goldt, S., Advani, M., Saxe, A. M., Krzakala, F., & Zdeborová, L. (2019). Dynamics of stochastic
gradient descent for two-layer neural networks in the teacher-student setup. Advances in neural
information processing systems, 32.

Golowich, N., Rakhlin, A., & Shamir, O. (2018). Size-independent sample complexity of neural
networks. In Conference On Learning Theory (pp. 297–299).: PMLR.

Gorishniy, Y., Rubachev, I., Khrulkov, V., & Babenko, A. (2021). Revisiting deep learning models
for tabular data. Advances in Neural Information Processing Systems, 34, 18932–18943.

Goyal, A., Didolkar, A., Ke, N. R., Blundell, C., Beaudoin, P., Heess, N., Mozer, M. C., & Bengio,
Y. (2021). Neural production systems. Advances in Neural Information Processing Systems, 34.

Goyal, A., Lamb, A., Hoffmann, J., Sodhani, S., Levine, S., Bengio, Y., & Schölkopf, B. (2020).
Recurrent independent mechanisms. In International Conference on Learning Representations.

Grinsztajn, L., Oyallon, E., & Varoquaux, G. (2022). Why do tree-based models still outperform
deep learning on typical tabular data? In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho,
& A. Oh (Eds.), Advances in Neural Information Processing Systems, volume 35 (pp. 507–520).:
Curran Associates, Inc.

Gromov, A. (2023). Grokking modular arithmetic. arXiv preprint arXiv:2301.02679.

Grosse, R. (2022). Neural net training dynamics chapter 1 - a toy model: Linear regression.

Gunasekar, S., Lee, J. D., Soudry, D., & Srebro, N. (2018). Implicit bias of gradient descent on
linear convolutional networks. Advances in neural information processing systems, 31.

Guo, T., Hu, W., Mei, S., Wang, H., Xiong, C., Savarese, S., & Bai, Y. (2023). How do transform-
ers learn in-context beyond simple functions? a case study on learning with representations. arXiv
preprint arXiv:2310.10616.

Hahn, M. (2020). Theoretical limitations of self-attention in neural sequence models. Transactions
of the Association for Computational Linguistics, 8, 156–171.

Hansel, D., Mato, G., &Meunier, C. (1992). Memorization without generalization in a multilay-
ered neural network. EPL (Europhysics Letters), 20(5), 471.

Hardy, G. H., Littlewood, J. E., Pólya, G., Pólya, G., et al. (1952). Inequalities. Cambridge Univer-
sity Press.

373



He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Proceedings of the IEEE international conference on
computer vision (pp. 1026–1034).

Hendel, R., Geva, M., & Globerson, A. (2023). In-context learning creates task vectors. In Find-
ings of the Association for Computational Linguistics: EMNLP 2023 (pp. 9318–9333).

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S., Tang, E., Song, D., & Steinhardt, J.
(2021). Measuring mathematical problem solving with the math dataset. In Thirty-fifth Confer-
ence on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2).

Henighan, T., Kaplan, J., Katz, M., Chen, M., Hesse, C., Jackson, J., Jun, H., Brown, T. B., Dhari-
wal, P., Gray, S., et al. (2020). Scaling laws for autoregressive generative modeling. arXiv preprint
arXiv:2010.14701.

Hewitt, J., Thickstun, J., Manning, C. D., & Liang, P. (2023). Backpack language models. arXiv
preprint arXiv:2305.16765.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford, E., de Las Casas,
D., Hendricks, L. A., Welbl, J., Clark, A., et al. (2022). An empirical analysis of compute-optimal
large language model training. Advances in Neural Information Processing Systems, 35, 30016–
30030.

Hoogland, J., Wang, G., Farrugia-Roberts, M., Carroll, L., Wei, S., &Murfet, D. (2024). The
developmental landscape of in-context learning. CoRR, abs/2402.02364.

Hornik, K., Stinchcombe, M., &White, H. (1989). Multilayer feedforward networks are universal
approximators. Neural networks, 2(5), 359–366.

Hron, J., Bahri, Y., Sohl-Dickstein, J., & Novak, R. (2020). Infinite attention: Nngp and ntk for
deep attention networks. In International Conference onMachine Learning (pp. 4376–4386).:
PMLR.

Hupkes, D., Dankers, V., Mul, M., & Bruni, E. (2020). Compositionality decomposed: How do
neural networks generalise? Journal of Artificial Intelligence Research, 67, 757–795.

Hutter, M. (2021). Learning curve theory. arXiv preprint arXiv:2102.04074.

Ishai, Y., Kushilevitz, E., Ostrovsky, R., & Sahai, A. (2008). Cryptography with constant compu-
tational overhead. In Proceedings of the 40th Annual ACM Symposium on the Theory of Computing
(pp. 433–442).

Jacot, A., Gabriel, F., & Hongler, C. (2018). Neural tangent kernel: Convergence and generaliza-
tion in neural networks. Advances in neural information processing systems, 31.

374



Jaegle, A., Borgeaud, S., Alayrac, J.-B., Doersch, C., Ionescu, C., Ding, D., Koppula, S., Zoran, D.,
Brock, A., Shelhamer, E., et al. (2021a). Perceiver io: A general architecture for structured inputs
& outputs. arXiv preprint arXiv:2107.14795.

Jaegle, A., Gimeno, F., Brock, A., Zisserman, A., Vinyals, O., & Carreira, J. (2021b). Perceiver:
General perception with iterative attention. arXiv preprint arXiv:2103.03206.

Janner, M., Li, Q., & Levine, S. (2021). Reinforcement learning as one big sequence modeling
problem. arXiv preprint arXiv:2106.02039.

Ji, Z. & Telgarsky, M. (2018). Gradient descent aligns the layers of deep linear networks. arXiv
preprint arXiv:1810.02032.

Ji, Z. & Telgarsky, M. (2019). Polylogarithmic width suffices for gradient descent to achieve arbi-
trarily small test error with shallow relu networks. arXiv preprint arXiv:1909.12292.

Ji, Z. & Telgarsky, M. (2020). Directional convergence and alignment in deep learning. Advances
in Neural Information Processing Systems, 33, 17176–17186.

Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D., & Bengio, S. (2019). Fantastic generalization
measures and where to find them. arXiv preprint arXiv:1912.02178.

Johnson, W. B., Lindenstrauss, J., & Schechtman, G. (1986). Extensions of lipschitz maps into
banach spaces. Israel Journal ofMathematics, 54(2), 129–138.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool,
K., Bates, R., Žídek, A., Potapenko, A., et al. (2021). Highly accurate protein structure prediction
with alphafold. Nature, 596(7873), 583–589.

Kabashima, Y. (1994). Perfect loss of generalization due to noise in k= 2 parity machines. Journal
of Physics A:Mathematical and General, 27(6), 1917.

Kaggle (2021). State of data science and machine learning 2021.

Kalimeris, D., Kaplun, G., Nakkiran, P., Edelman, B., Yang, T., Barak, B., & Zhang, H. (2019). Sgd
on neural networks learns functions of increasing complexity. Advances in neural information
processing systems, 32.

Kamath, P., Montasser, O., & Srebro, N. (2020). Approximate is good enough: Probabilistic
variants of dimensional and margin complexity. In Conference on Learning Theory (pp. 2236–
2262).: PMLR.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S., Radford,
A., Wu, J., & Amodei, D. (2020). Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361.

375



Karpathy, A. (2023). Mingpt. https://github.com/karpathy/minGPT/tree/master.

Kearns, M. (1998). Efficient noise-tolerant learning from statistical queries. Journal of the ACM
(JACM), 45(6), 983–1006.

Kerg, G., Kanuparthi, B., Goyal, A., Goyette, K., Bengio, Y., & Lajoie, G. (2020). Untangling
tradeoffs between recurrence and self-attention in artificial neural networks. Advances in Neural
Information Processing Systems, 33.

Kim, H., Papamakarios, G., &Mnih, A. (2021). The lipschitz constant of self-attention. In
International Conference onMachine Learning (pp. 5562–5571).: PMLR.

Kingma, D. P. & Ba, J. (2014). Adam: Amethod for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kirsch, L., Harrison, J., Sohl-Dickstein, J., &Metz, L. (2022). General-purpose in-context learning
by meta-learning transformers. CoRR, abs/2212.04458.

Klivans, A. & Kothari, P. (2014). Embedding hard learning problems into gaussian space. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM2014): Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Klivans, A. R., O’Donnell, R., & Servedio, R. A. (2004). Learning intersections and thresholds of
halfspaces. Journal of Computer and System Sciences, 68(4), 808–840.

Kol, G., Raz, R., & Tal, A. (2017). Time-space hardness of learning sparse parities. In Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing (pp. 1067–1080).

Kosmann-Schwarzbach, Y. et al. (2010). Groups and symmetries. Springer.

Krebs, H. A. (1975). The august krogh principle:“for many problems there is an animal on which
it can be most conveniently studied”. Journal of Experimental Zoology, 194(1), 221–226.

Kumar, T., Bordelon, B., Gershman, S. J., & Pehlevan, C. (2023). Grokking as the transition from
lazy to rich training dynamics. CoRR, abs/2310.06110.

Kunin, D., Yamamura, A., Ma, C., & Ganguli, S. (2022). The asymmetric maximummargin bias
of quasi-homogeneous neural networks. In The Eleventh International Conference on Learning
Representations.

Kushilevitz, E. &Mansour, Y. (1993). Learning decision trees using the fourier spectrum. SIAM
Journal on Computing, 22(6), 1331–1348.

Laurent, B. &Massart, P. (2000). Adaptive estimation of a quadratic functional by model selec-
tion. Annals of Statistics, (pp. 1302–1338).

376

https://github.com/karpathy/minGPT/tree/master


Lee-Thorp, J., Ainslie, J., Eckstein, I., & Ontanon, S. (2021). Fnet: Mixing tokens with fourier
transforms. arXiv preprint arXiv:2105.03824.

Lewkowycz, A., Andreassen, A., Dohan, D., Dyer, E., Michalewski, H., Ramasesh, V., Slone, A.,
Anil, C., Schlag, I., Gutman-Solo, T., et al. (2022). Solving quantitative reasoning problems with
language models. Advances in Neural Information Processing Systems, 35, 3843–3857.

Li, Y., Ildiz, M. E., Papailiopoulos, D., & Oymak, S. (2023). Transformers as algorithms: General-
ization and stability in in-context learning. In International Conference onMachine Learning (pp.
19565–19594).: PMLR.

Liang, P., Bommasani, R., Lee, T., Tsipras, D., Soylu, D., Yasunaga, M., Zhang, Y., Narayanan, D.,
Wu, Y., Kumar, A., et al. (2023). Holistic evaluation of language models. Transactions onMachine
Learning Research.

Likhosherstov, V., Choromanski, K., &Weller, A. (2021). On the expressive power of self-
attention matrices. arXiv preprint arXiv:2106.03764.

Liu, B., Ash, J., Goel, S., Krishnamurthy, A., & Zhang, C. (2024). Exposing attention glitches with
flip-flop language modeling. Advances in Neural Information Processing Systems, 36.

Liu, B., Ash, J. T., Goel, S., Krishnamurthy, A., & Zhang, C. (2022a). Transformers learn shortcuts
to automata. arXiv preprint arXiv:2210.10749.

Liu, P. J., Saleh, M., Pot, E., Goodrich, B., Sepassi, R., Kaiser, L., & Shazeer, N. (2018). Generating
wikipedia by summarizing long sequences. arXiv preprint arXiv:1801.10198.

Liu, Z., Kitouni, O., Nolte, N. S., Michaud, E., Tegmark, M., &Williams, M. (2022b). Towards
understanding grokking: An effective theory of representation learning. Advances in Neural Infor-
mation Processing Systems, 35, 34651–34663.

Liu, Z., Michaud, E. J., & Tegmark, M. (2023). Omnigrok: Grokking beyond algorithmic data. In
The Eleventh International Conference on Learning Representations.

Long, P. M. & Sedghi, H. (2019). Generalization bounds for deep convolutional neural networks.
arXiv preprint arXiv:1905.12600.

Lu, K., Grover, A., Abbeel, P., &Mordatch, I. (2021). Pretrained transformers as universal com-
putation engines. arXiv preprint arXiv:2103.05247.

Luong, M.-T., Pham, H., &Manning, C. D. (2015). Effective approaches to attention-based
neural machine translation. arXiv preprint arXiv:1508.04025.

Lutz, P., Arnould, L., Boyer, C., & Scornet, E. (2022). Sparse tree-based initialization for neural
networks. arXiv preprint arXiv:2209.15283.

377



Lyu, K., Jin, J., Li, Z., Du, S. S., Lee, J. D., &Hu, W. (2023). Dichotomy of early and late phase
implicit biases can provably induce grokking. CoRR, abs/2311.18817.

Lyu, K. & Li, J. (2019). Gradient descent maximizes the margin of homogeneous neural networks.
In International Conference on Learning Representations.

Lyu, K., Li, Z., Wang, R., & Arora, S. (2021). Gradient descent on two-layer nets: Margin max-
imization and simplicity bias. Advances in Neural Information Processing Systems, 34, 12978–
12991.

Makkuva, A. V., Bondaschi, M., Girish, A., Nagle, A., Jaggi, M., Kim, H., & Gastpar, M. (2024).
Attention with markov: A framework for principled analysis of transformers via markov chains.
CoRR, abs/2402.04161.

Malach, E., Kamath, P., Abbe, E., & Srebro, N. (2021). Quantifying the benefit of using differ-
entiable learning over tangent kernels. In International Conference onMachine Learning (pp.
7379–7389).: PMLR.

Malach, E. & Shalev-Shwartz, S. (2019). Is deeper better only when shallow is good? Advances in
Neural Information Processing Systems, 32.

Malach, E. & Shalev-Shwartz, S. (2022). When hardness of approximation meets hardness of
learning. Journal ofMachine Learning Research, 23(91), 1–24.

Merrill, W., Tsilivis, N., & Shukla, A. (2023). A tale of two circuits: Grokking as competition of
sparse and dense subnetworks. In ICLR 2023Workshop onMathematical and Empirical Under-
standing of FoundationModels.

Michaud, E. J., Liu, Z., Girit, U., & Tegmark, M. (2023). The quantization model of neural scal-
ing. arXiv preprint arXiv:2303.13506.

Minsky, M. & Papert, S. (1969). Perceptrons: an introduction to computational geometry. MIT
Press.

Mitchison, G. & Durbin, R. (1989). Bounds on the learning capacity of some multi-layer net-
works. Biological Cybernetics, 60(5), 345–365.

Morwani, D., Batra, J., Jain, P., & Netrapalli, P. (2023a). Simplicity bias in 1-hidden layer neural
networks.

Morwani, D., Edelman, B. L., Oncescu, C.-A., Zhao, R., & Kakade, S. (2023b). Feature emergence
via margin maximization: case studies in algebraic tasks. arXiv preprint arXiv:2311.07568.

Mossel, E., O’Donnell, R., & Servedio, R. P. (2003). Learning juntas. In Proceedings of the thirty-
fifth annual ACM symposium on Theory of computing (pp. 206–212).

378



Nakkiran, P. & Bansal, Y. (2020). Distributional generalization: A new kind of generalization.
arXiv preprint arXiv:2009.08092.

Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B., & Sutskever, I. (2021). Deep double
descent: Where bigger models and more data hurt. Journal of StatisticalMechanics: Theory and
Experiment, 2021(12), 124003.

Nanda, N., Chan, L., Liberum, T., Smith, J., & Steinhardt, J. (2023). Progress measures for
grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217.

Nanda, N. & Lieberum, T. (2022). A mechanistic interpretability analysis of grokking. Alignment
Forum.

Neyshabur, B., Bhojanapalli, S., & Srebro, N. (2017). A pac-bayesian approach to spectrally-
normalized margin bounds for neural networks. arXiv preprint arXiv:1707.09564.

Neyshabur, B., Tomioka, R., & Srebro, N. (2015). Norm-based capacity control in neural net-
works. In Conference on Learning Theory (pp. 1376–1401).: PMLR.

Nielsen, M. A. (2015). Neural networks and deep learning, volume 25. Determination press San
Francisco, CA.

O’Donnell, R. (2014). Analysis of Boolean functions. Cambridge University Press.

Olah, C., Cammarata, N., Schubert, L., Goh, G., Petrov, M., & Carter, S. (2020). Zoom in: An
introduction to circuits. Distill. https://distill.pub/2020/circuits/zoom-in.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma, N., Henighan, T., Mann, B., Askell, A.,
Bai, Y., Chen, A., Conerly, T., Drain, D., Ganguli, D., Hatfield-Dodds, Z., Hernandez, D., John-
ston, S., Jones, A., Kernion, J., Lovitt, L., Ndousse, K., Amodei, D., Brown, T., Clark, J., Kaplan,
J., McCandlish, S., & Olah, C. (2022). In-context learning and induction heads. Transformer
Circuits Thread. https://transformer-circuits.pub/2022/in-context-learning-and-induction-
heads/index.html.

Opper, M. (1994). Learning and generalization in a two-layer neural network: The role of the
vapnik-chervonvenkis dimension. Physical review letters, 72(13), 2113.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani,
A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., & Chintala, S. (2019). PyTorch: An imperative
style, high-performance deep learning library. In H.Wallach, H. Larochelle, A. Beygelzimer, F.
d'Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in Neural Information Processing Systems 32
(pp. 8024–8035). Curran Associates, Inc.

379



Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Pret-
tenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Per-
rot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal ofMachine
Learning Research, 12, 2825–2830.

Petroni, F., Rocktäschel, T., Riedel, S., Lewis, P., Bakhtin, A., Wu, Y., &Miller, A. (2019). Lan-
guage models as knowledge bases? In Proceedings of the 2019 Conference on EmpiricalMethods
in Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP) (pp. 2463–2473).

Pietrzak, K. (2012). Cryptography from learning parity with noise. In International Conference on
Current Trends in Theory and Practice of Computer Science (pp. 99–114).: Springer.

Polu, S. & Sutskever, I. (2020). Generative language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393.

Power, A., Burda, Y., Edwards, H., Babuschkin, I., &Misra, V. (2021). Grokking: Generalization
beyond overfitting on small algorithmic datasets. In ICLRMATH-AIWorkshop.

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language un-
derstanding by generative pre-training. preprint, available at https://cdn.openai.com/
research-covers/language-unsupervised/language_understanding_paper.pdf.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. (2019). Language models
are unsupervised multitask learners. OpenAI blog, 1(8), 9.

Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M., Hamprecht, F., Bengio, Y., & Courville,
A. (2019). On the spectral bias of neural networks. In International Conference onMachine
Learning (pp. 5301–5310).: PMLR.

Rahimi, A. & Recht, B. (2007). Random features for large-scale kernel machines. Advances in
neural information processing systems, 20.

Reddy, G. (2023). The mechanistic basis of data dependence and abrupt learning in an in-context
classification task.

Refinetti, M., Goldt, S., Krzakala, F., & Zdeborová, L. (2021). Classifying high-dimensional gaus-
sian mixtures: Where kernel methods fail and neural networks succeed. In International Confer-
ence onMachine Learning (pp. 8936–8947).: PMLR.

Rogers, A., Kovaleva, O., & Rumshisky, A. (2020). A primer in BERTology: What we know about
how BERTworks. Transactions of the Association for Computational Linguistics, 8, 842–866.

Rosen-Zvi, M., Klein, E., Kanter, I., & Kinzel, W. (2002). Mutual learning in a tree parity machine
and its application to cryptography. Physical Review E, 66(6), 066135.

380

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf


Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organi-
zation in the brain. Psychological review, 65(6), 386.

Saad, D. & Solla, S. (1995a). Dynamics of on-line gradient descent learning for multilayer neural
networks. Advances in neural information processing systems, 8.

Saad, D. & Solla, S. A. (1995b). On-line learning in soft committee machines. Physical Review E,
52(4), 4225.

Sanford, C., Hsu, D. J., & Telgarsky, M. (2024). Representational strengths and limitations of
transformers. Advances in Neural Information Processing Systems, 36.

Saxe, A., McClelland, J., & Ganguli, S. (2014). Exact solutions to the nonlinear dynamics of learn-
ing in deep linear neural networks. In Proceedings of the International Conference on Learning
Representations 2014: International Conference on Learning Representations 2014.

Saxton, D., Grefenstette, E., Hill, F., & Kohli, P. (2018). Analysing mathematical reasoning abili-
ties of neural models. In International Conference on Learning Representations.

Schaeffer, R., Miranda, B., & Koyejo, S. (2023). Are emergent abilities of large language models a
mirage? CoRR, abs/2304.15004.

Shah, H., Tamuly, K., Raghunathan, A., Jain, P., & Netrapalli, P. (2020). The pitfalls of simplicity
bias in neural networks. Advances in Neural Information Processing Systems, 33, 9573–9585.

Shalev-Shwartz, S. & Ben-David, S. (2014). Understanding machine learning: From theory to
algorithms. Cambridge university press.

Shalev-Shwartz, S., Shamir, O., & Shammah, S. (2017). Failures of gradient-based deep learning.
In International Conference onMachine Learning (pp. 3067–3075).: PMLR.

Shamir, O. & Zhang, T. (2013). Stochastic gradient descent for non-smooth optimization: Con-
vergence results and optimal averaging schemes. In International conference on machine learning
(pp. 71–79).: PMLR.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell system technical
journal, 27(3), 379–423.

Shaw, P., Uszkoreit, J., & Vaswani, A. (2018). Self-attention with relative position representa-
tions. In M. A. Walker, H. Ji, & A. Stent (Eds.), Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, NAACL-HLT, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 2 (Short Papers) (pp.
464–468).: Association for Computational Linguistics.

381



Shi, Z., Wei, J., & Liang, Y. (2021). A theoretical analysis on feature learning in neural networks:
Emergence from inputs and advantage over fixed features. In International Conference on Learning
Representations.

Shpilka, A., Yehudayoff, A., et al. (2010). Arithmetic circuits: A survey of recent results and open
questions. Foundations and Trends® in Theoretical Computer Science, 5(3–4), 207–388.

Siegelmann, H. T. & Sontag, E. D. (1995). On the computational power of neural nets. Journal of
computer and system sciences, 50(1), 132–150.

Simonetti, R. & Caticha, N. (1996). On-line learning in parity machines. Journal of Physics A:
Mathematical and General, 29(16), 4859.

Snell, C., Zhong, R., Klein, D., & Steinhardt, J. (2021). Approximating how single head attention
learns. arXiv preprint arXiv:2103.07601.

Soudry, D., Hoffer, E., Nacson, M. S., Gunasekar, S., & Srebro, N. (2018). The implicit bias of
gradient descent on separable data. The Journal ofMachine Learning Research, 19(1), 2822–2878.

Srivastava, A., Rastogi, A., Rao, A., Shoeb, A. A. M., Abid, A., Fisch, A., Brown, A. R., Santoro,
A., Gupta, A., Garriga-Alonso, A., et al. (2022). Beyond the imitation game: Quantifying and
extrapolating the capabilities of language models. arXiv preprint arXiv:2206.04615.

Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ra-
mamoorthi, R., Barron, J., & Ng, R. (2020). Fourier features let networks learn high frequency
functions in low dimensional domains. Advances in neural information processing systems, 33,
7537–7547.

Tay, Y., Dehghani, M., Abnar, S., Shen, Y., Bahri, D., Pham, P., Rao, J., Yang, L., Ruder, S., &
Metzler, D. (2020). Long range arena: A benchmark for efficient transformers. arXiv preprint
arXiv:2011.04006.

Telgarsky, M. (2022). Feature selection with gradient descent on two-layer networks in low-
rotation regimes. arXiv preprint arXiv:2208.02789.

Tenney, I., Das, D., & Pavlick, E. (2019). Bert rediscovers the classical nlp pipeline. arXiv preprint
arXiv:1905.05950.

Titsworth, R. C. (1962). Correlation properties of cyclic sequences. PhD thesis, California Institute
of Technology.

Tolstikhin, I. O., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T., Yung, J.,
Steiner, A., Keysers, D., Uszkoreit, J., et al. (2021). MLP-Mixer: An all-MLP architecture for
vision. Advances in neural information processing systems, 34, 24261–24272.

382



Valle-Perez, G., Camargo, C. Q., & Louis, A. A. (2018). Deep learning generalizes because the
parameter-function map is biased towards simple functions. arXiv preprint arXiv:1805.08522.

Valvoda, J., Saphra, N., Rawski, J., Williams, A., & Cotterell, R. (2022). Benchmarking composi-
tionality with formal languages. arXiv preprint arXiv:2208.08195.

Vardi, G. (2023). On the implicit bias in deep-learning algorithms. Communications of the ACM,
66(6), 86–93.

Vardi, G., Shamir, O., & Srebro, N. (2022). On margin maximization in linear and relu networks.
Advances in Neural Information Processing Systems, 35, 37024–37036.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polo-
sukhin, I. (2017). Attention is all you need. Advances in neural information processing systems,
30.

Von Oswald, J., Niklasson, E., Randazzo, E., Sacramento, J., Mordvintsev, A., Zhmoginov, A., &
Vladymyrov, M. (2023). Transformers learn in-context by gradient descent. In International
Conference onMachine Learning (pp. 35151–35174).: PMLR.

Vuckovic, J., Baratin, A., & Combes, R. T. d. (2020). A mathematical theory of attention. arXiv
preprint arXiv:2007.02876.

Wainwright, M. J. (2019). High-dimensional statistics: A non-asymptotic viewpoint, volume 48.
Cambridge University Press.

Watkin, T. L., Rau, A., & Biehl, M. (1993). The statistical mechanics of learning a rule. Reviews of
Modern Physics, 65(2), 499.

Wei, C., Chen, Y., &Ma, T. (2021). Statistically meaningful approximation: a case study on ap-
proximating turing machines with transformers. arXiv preprint arXiv:2107.13163.

Wei, C., Lee, J. D., Liu, Q., &Ma, T. (2019a). Regularization matters: generalization and op-
timization of neural nets vs their induced kernel. Advances in Neural Information Processing
Systems, 32.

Wei, C., Lee, J. D., Liu, Q., &Ma, T. (2019b). Regularization matters: Generalization and opti-
mization of neural nets v.s. their induced kernel. In H.Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in Neural Information Processing Systems,
volume 32: Curran Associates, Inc.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., Zhou, D., et al. (2022).
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural infor-
mation processing systems, 35, 24824–24837.

383



Wu, J., Zou, D., Chen, Z., Braverman, V., Gu, Q., & Bartlett, P. L. (2023). Howmany pretraining
tasks are needed for in-context learning of linear regression? arXiv preprint arXiv:2310.08391.

Xie, S. M., Raghunathan, A., Liang, P., &Ma, T. (2022). An explanation of in-context learning as
implicit bayesian inference. In The Tenth International Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., & Bengio, Y. (2015).
Show, attend and tell: Neural image caption generation with visual attention. In International
conference on machine learning (pp. 2048–2057).: PMLR.

Yang, G. (2019). Wide feedforward or recurrent neural networks of any architecture are gaussian
processes. Advances in Neural Information Processing Systems, 32.

Yang, G. (2020). Tensor programs II: Neural tangent kernel for any architecture. arXiv preprint
arXiv:2006.14548.

Yang, G., Hu, E. J., Babuschkin, I., Sidor, S., Liu, X., Farhi, D., Ryder, N., Pachocki, J., Chen, W.,
& Gao, J. (2022a). Tensor programs v: Tuning large neural networks via zero-shot hyperparameter
transfer. arXiv preprint arXiv:2203.03466.

Yang, J., Lindenbaum, O., & Kluger, Y. (2022b). Locally sparse neural networks for tabular
biomedical data. In International Conference onMachine Learning (pp. 25123–25153).: PMLR.

Yao, S., Peng, B., Papadimitriou, C., & Narasimhan, K. (2021). Self-attention networks can process
bounded hierarchical languages. In Proceedings of the 59th AnnualMeeting of the Association
for Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers) (pp. 3770–3785).

Yehudai, G. & Ohad, S. (2020). Learning a single neuron with gradient methods. In Conference on
Learning Theory (pp. 3756–3786).: PMLR.

Yehudai, G. & Shamir, O. (2019). On the power and limitations of random features for under-
standing neural networks. Advances in Neural Information Processing Systems, 32.

Yun, C., Bhojanapalli, S., Rawat, A. S., Reddi, S. J., & Kumar, S. (2019). Are transformers univer-
sal approximators of sequence-to-sequence functions? arXiv preprint arXiv:1912.10077.

Zeiler, M. D. & Fergus, R. (2014). Visualizing and understanding convolutional networks. In
Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12,
2014, Proceedings, Part I 13 (pp. 818–833).: Springer.

Zhai, X., Kolesnikov, A., Houlsby, N., & Beyer, L. (2022). Scaling vision transformers. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 12104–12113).

384



Zhang, C., Raghu, M., Kleinberg, J., & Bengio, S. (2021). Pointer value retrieval: A new
benchmark for understanding the limits of neural network generalization. arXiv preprint
arXiv:2107.12580.

Zhang, J., Karimireddy, S. P., Veit, A., Kim, S., Reddi, S., Kumar, S., & Sra, S. (2020). Why are
adaptive methods good for attention models? Advances in Neural Information Processing Systems,
33, 15383–15393.

Zhang, J., Karimireddy, S. P., Veit, A., Kim, S., Reddi, S. J., Kumar, S., & Sra, S. (2019). Why are
adaptive methods good for attention models? arXiv preprint arXiv:1912.03194.

Zhang, T. (2002). Covering number bounds of certain regularized linear function classes. Journal
ofMachine Learning Research, 2(Mar), 527–550.

Zhang, Y., Backurs, A., Bubeck, S., Eldan, R., Gunasekar, S., &Wagner, T. (2022). Unveiling
transformers with lego: a synthetic reasoning task. arXiv preprint arXiv:2206.04301.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z., Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing,
E., et al. (2024). Judging llm-as-a-judge with mt-bench and chatbot arena. Advances in Neural
Information Processing Systems, 36.

Zhenmei, S., Wei, J., & Liang, Y. (2022). A theoretical analysis on feature learning in neural net-
works: Emergence from inputs and advantage over fixed features. In International Conference on
Learning Representations.

Zhong, Z., Liu, Z., Tegmark, M., & Andreas, J. (2023). The clock and the pizza: Two stories in
mechanistic explanation of neural networks. arXiv preprint arXiv:2306.17844.

Zhou, H., Bradley, A., Littwin, E., Razin, N., Saremi, O., Susskind, J., Bengio, S., & Nakkiran, P.
(2023). What algorithms can transformers learn? a study in length generalization. In The 3rd
Workshop onMathematical Reasoning and AI at NeurIPS’23.

Zou, D., Cao, Y., Zhou, D., & Gu, Q. (2020). Gradient descent optimizes over-parameterized deep
relu networks. Machine learning, 109, 467–492.

385


	Title Page
	Copyright
	Abstract
	Table of Contents
	Acknowledgments
	Introduction
	A Parable
	What Kind of Science?
	Model Systems of Deep Learning
	Combinatorial Tasks

	Contributions
	Deep Learning Preliminaries
	Neural Networks
	Classifiers from Networks
	Training

	Variable Creation
	Introduction
	Background and notation
	Abstractions of (self-)attention
	Capacity bounds for attention modules
	Attention approximates sparse functions
	Experiments
	Conclusion and future work

	Hidden Progress
	Introduction
	Preliminaries
	Empirical findings
	Theoretical analyses
	Hidden progress: discussion and additional experiments
	Conclusion

	Pareto Frontiers
	Introduction
	Background
	Theory
	Experiments
	Conclusion

	Feature Emergence
	Introduction
	Preliminaries
	Theoretical Approach
	Cyclic groups (modular addition)
	Sparse parity
	Finite Groups with Real Representations
	Discussion

	Induction Heads
	Introduction
	Setup
	Empirical Findings and Theoretical Validation
	Conclusion and Discussion

	Appendix Variable Creation
	Proofs of capacity bounds
	Sparse function representation via bounded-norm Transformers
	Details for experiments
	Additional related work

	Appendix Hidden Progress
	Additional background, preliminaries, and related work
	Proofs
	Additional figures, experiments, and discussion
	Details for all experiments

	Appendix Pareto Frontiers
	Additional related work
	Proofs
	Full experimental results

	Appendix Feature Emergence
	Further Related Work
	Experimental details
	Additional Experiments
	Alternative construction
	Proofs for the Theoretical Approach
	Proofs for cyclic groups(Theorem 7.7)
	Proofs for Sparse parity
	Additional Group Representation Theory Preliminaries
	Proofs for finite groups with real representations

	Appendix Induction Heads
	Proofs
	Experimental Details
	Additional Experiments

	References

