
A Proof of Strassen’s Degree Bound
for Homogeneous Arithmetic Circuits

SENIOR THESIS

PRINCETON UNIVERSITY

DEPARTMENT OF MATHEMATICS

Ben Edelman

May 7, 2018



Abstract

The field of algebraic complexity theory is concerned with the amount of
fundamental resources needed to perform various algebraic computations. One of
the central challenges of algebraic complexity theory is to find explicit polynomials
that cannot be computed by small arithmetic circuits. Strassen’s degree bound
[1] on the complexity of circuits computing various natural explicit collections
of polynomials – such as x1

k , x2
k , . . . , xn

k , as well as the elementary symmetric
polynomials – remains unsurpassed in this regard 45 years after its publication. In
this thesis, I introduce arithmetic circuits and the degree bound, and I provide an
alternate proof for the special class of arithmetic circuits known as homogeneous
arithmetic circuits.
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1 Introduction

1.1 Algebraic computation

Much of computer science nowadays fundamentally deals with not bits and bytes
and ANDs and ORs, but with numbers and variables and additions and multi-
plications. Since Turing it has been known that both ways of thinking about
computation are in the end equivalent, but when—as is very common—we want
to multiply matrices, or perform a Fourier transform, or implement an algebraic
error-correcting code, the algebraic way of thinking can often be a more natural
way of thinking about the problem at hand systematically. In so many cases, we
want to be able to study the computation of polynomials. This is especially true
for the study of the hardness, or ‘complexity’, of algebraic computation.

In order to rigorously study how hard polynomials are to compute, we must fix
a model of computation. Even though we can technically model the computation
of polynomials with Turing machines or boolean circuits, arithmetic circuits are
the dominant model for this sort of computation because they make analysis much
simpler and essentially capture the full complexity of algebraic computation.1

1.1.1 Arithmetic circuits

An arithmetic circuit C over a field F is a directed acyclic graph: in other words,
it consists of vertices, and edges (with direction indicated) that connect pairs of
vertices. Each vertex v computes a polynomial [v] over F based on what type of
vertex it is:

• Input vertices are vertices that have no in-edges. Each input vertex is labeled
with either a field element f ∈ F or a variable xi , and we say that the vertex
computes its label.

• Gates are vertices that have in-edges. We require of C that every gate has
in-degree 2 (i.e. ‘fan-in’ 2). For a given gate g , let u and v be the two vertices
that have edges leading into g . There are two types of gates:

– Plus gates, labeled with +, satisfy [g ] = [u]+ [v].
1Discussion of alternative models for algebraic computation can be found in chapter 4 of [2].
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– Product gates, labeled with ×, satisfy [g ] = [u] · [v].

In this manner, every vertex inductively computes a polynomial. Some of the
vertices are output vertices. Let Out be the set of output vertices. Then we say that
C computes the polynomials computed by the vertices in Out.2

Here’s an example. Let C1 be the following circuit over C:

x1 x2 −2

+ ×

×

×

+

x1
2+ x2

2

Let’s say the topmost plus gate in C1 is the only output gate. C1, thus, computes
the polynomial x1

2+ x2
2.

The measure of complexity of algebraic computation we will use is circuit size.
We will define the size of a circuit C , denoted S(C ), as the number of vertices in
C . 3 Looking at our example, we see that S(C1) = 8.

The arithmetic circuit complexity of a polynomial f , denoted S( f ), is given
by the size of the smallest circuit that computes f . More generally, the complex-
ity of the collection of polynomials f1, . . . , fk , is defined similarly and denoted
S( f1, . . . , fk). Suppose f = x1

2+ x2
2. Because C1 computes f , we know S( f )≤ 8.

But, as is easy to see, C1 is a rather inefficient way of computing f . We can compute
it more efficiently with the following circuit, C2:

2One fine but important distinction to make is that if C computes the polynomial f (x1, . . . , xn),
and f (b1, . . . , bn) = g (b1, . . . , bn) for all b1, . . . , bn ∈ Fn , this does not necessarily imply that C
computes g . We only say C computes g if the form of f and g as formal polynomials is the same
(they have the same terms). In jargon, we are dealing with syntactic, not semantic computation.

3The edge count will differ from the vertex count by a factor of ≤ 2 because the fan-in is 2.
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x1 x2

× ×

+

x1
2+ x2

2

S(C2) = 5, so S( f ) ≤ 5. In fact, it turns out that S( f ) = 5. In this simple
case, the lower bound S( f )≥ 5 can be deduced through specific means, but it isn’t
particularly interesting or useful to prove circuit lower bounds laboriously one at
a time: the real task is to find lower bounds on the arithmetic circuit complexity
of infinite families of desired outputs.

Before we touch on the state of the art on arithmetic circuit lower bounds, I’ll
present two somewhat trivial lower bounds.

Remark 1 (simple dimension bound). If the variables x1, x2, . . . , xn all appear in
the formula for f , then S( f )≥ n.

Proof. If C computes f , then C must contain n input vertices labeled x1, . . . , xn

respectively: otherwise there would be no way for any of these variables to enter
the computation.

In other words, for a polynomial over F[x1, . . . , xn], it is often easy to demon-
strate a arithmetic circuit lower bound of n. What we tend to be interested in,
then, is superlinear (in n) lower bounds.

Remark 2 (simple degree bound 4). If deg f ≥ 2d , then S( f )≥ d .

Proof. The proof is by induction on d . If d = 0, then the bound is trivial. Now
suppose we know that any polynomial of degree ≥ 2s−1 can only be computed
by circuits of size ≥ s − 1. In any circuit C computing a polynomial f of degree
d ≥ 2s , the output gate g is a plus gate or a product gate. In either case, at least one

4When I refer to the degree of a polynomial, I am always talking about the total degree: the
maximum of the degrees of each term, where the degree of a term is the sum of the exponents of its
variables.
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of its predecessor vertices v must compute a polynomial [v] of degree ≥ d
2 ≥ 2s−1.

Since C is acyclic, there are no paths from g to v, so the portion of the circuit
that computes v does not include g . This portion must have size ≥ s − 1 by the
induction hypothesis, so C , which additionally includes at least g , must have size
≥ s .

In other words, for a polynomial of degree D, it is easy to demonstrate a
lower bound of log D . Typically, we care about polynomials with degree at most
polynomial in the number of variables, so this remark doesn’t give us superlinear
lower bounds.

1.2 Strassen’s degree bound

Suppose we want to compute x1
k , . . . , xn

k . By Remark 2, each polynomial xi
k has

complexity log k. And it seems intuitively plausible that the ability to compute
all these monomials together in parallel shouldn’t allow us to use fewer resources
than computing them separately: in other words, that the following circuit C of
size n log k is the smallest one we can hope for:

x1 x2 xn

× × ×

× × ×

× × ×

x1
k x2

k xn
k

. . .

. . .

. . .

. . .

...
...

...

I encourage you to try playing around with small cases and seeing whether you
share this intuition.

In a landmark 1973 paper [1] that remains the state of the art in general arith-
metic circuit lower bounds, Strassen proved that the above intuition is correct: no
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circuit smaller than C computes the n monomials.5

Proposition 1. S(x1
k , . . . , xn

k )≥ n log k

In fact, this proposition is just one case of Strassen’s result, which is known
as the degree bound. The full statement of the degree bound (and its proof) relies
upon some basic algebraic geometry, beginning with the concept of an algebraic
variety.6 In this section we will work over the algebraically closed field C.

We define the variety of a set of polynomials f1, . . . , fk over C[x1, . . . , xn], de-
noted V ( f1, . . . , fk), as the set of points in Cn that are mapped to zero by all the
polynomials fi when considered as functions from Cn→C:

V ( f1, . . . , fk ) = {(a1, . . . ,an) ∈C
n : f1((a1, . . . ,an)) = . . .= fk ((a1, . . . ,an)) = 0}

Varieties have two properties that we will be concerned with: dimension and
degree.

The dimension of a variety V ( f1, . . . , fk) roughly corresponds to the intuitive
conception of the dimension of the set V : if V contains a finite number of points,
its dimension of 0; if V forms a curve, then its dimension is 1; and so on. For-
mally, dimV ( f1, . . . , fk ) is the minimum size of a set of hyperplanes such that the
intersection of these hyperplanes with V is finite.7

The degree of V ( f1, . . . , fk), denoted degV ( f1, . . . , fk), is the maximum finite
number of points we can obtain by intersecting the variety with dimV ( f1, . . . , fk )
hyperplanes. Thus, dimension and degree are intimately related. Strassen’s proof
relies upon the notion of degree, while dimension has relevance for my contribu-
tion.

Strassen’s proof hinges on a classical theorem from algebraic geometry, Bezout’s
theorem, which I will state without proof.

Theorem 1 (Bezout’s theorem). degV ( f1, . . . , fk )≤
∏k

i=1 deg fi

Now we are ready to see Strassen’s theorem.

5Strassen’s proof only deals with algebraically closed fields.
6My presentation of the degree bound is indebted to the recent survey by Chen, Kayal, and

Wigderson [3].
7Hyperplanes are linear subspaces of dimension n− 1, which can be defined by equations of the

form a1 x1+ . . .+ an xn = b .
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Theorem 2 (Strassen’s degree bound). For any collection of polynomials f1, . . . , fk ∈
C[x1, . . . , xn],

S( f1, . . . , fk )≥ logdegV (y1− f1(x), . . . , yk − fk (x))

where the variables y1, . . . , yk are introduced as auxiliaries.

(In particular, if there exist field elements a1, . . . ,an ∈ F such that the number
of solutions for f1(x) = a1, . . . , fn(x) = an is N , then S( f1, . . . , fk )≥ logN .)

Proof sketch. Consider any circuit C that computes f1, . . . , fk , and let s = S(C ).
The main idea of the proof is to introduce an auxiliary variable zvi

for each vertex
vi in C and encode the circuit into a variety over C[x1, . . . , xn , zv1

, . . . , zvs
].

We introduce one polynomial hv for each vertex v in C :

• If v is an input vertex labeled by xi , let hv (x1, . . . , xn , zv1
, . . . , zvs

) = zv − xi .
It v is labeled by the field element c , let hv (x1, . . . , xn , zv1

, . . . , zvs
) = zv − c .

• If v is a plus gate, let hv(x1, . . . , xn , zv1
, . . . , zvs

) = zv − (zu + zw), where u
and w are the predecessors of v.

• If v is a product gate, let hv (x1, . . . , xn , zv1
, . . . , zvs

) = zv − zu zw .

The condition hv = 0 asserts that the output of gate v follows from the inputs
in the proper manner. The set of conditions {hv = 0: v ∈ C }, then, asserts that
the outputs of C (the variables {zv : v ∈ Out}) follow from the inputs x1, . . . , xn

in the proper manner. If we recall the auxiliarly variables yi from the theorem
statement, we can restate this as the observation that mapping the output variables
{zv : v ∈Out} to the variables {yi : i ∈ [k]} induces a bijection from V ({hv : v ∈
C }) to V ({yi − fi (x1, . . . , xn) : i ∈ [k]}.

By Bezout’s theorem, degV ({hv : v ∈ C }) ≤
∏

v∈C deg hv ≤ 2S(C ). Hence,
degV ({yi − fi (x1, . . . , xn) : i ∈ [k]} ≤ 2S(C ), i.e.:

S(C )≥ logdegV ({yi − fi (x1, . . . , xn) : i ∈ [k]})

.
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Note that the degree bound is in fact a lower bound on the number of product
gates, because in the proof the input vertices and plus gates yield polynomials of
degree 1, while product gates yield polynomials of degree 2, and only the degree 2
factors are responsible for the magnitude of

∏

v∈C deg hv .
Now that we have seen the degree bound, we can apply it to to obtain Proposi-

tion 1: S(x1
k , . . . , xn

k )≥ n log k.

Proof. By the degree bound, S(x1
k , . . . , xn

k )≥ logdegV (y1− x1
k , . . . , yn− xn

k ). If
we intersect V (y1− x1

k , . . . , yn− xn
k )with the hyperplanes {yi = 1 : i ∈ [n]}, then

we obtain the set {ζk
j : j ∈ [k]}n , where ζk is a primitive kth root of unity and

the exponentiation of the set indicates taking the cartesian product. This set has
size kn , so S(x1

k , . . . , xn
k )≥ log kn = n log k.

Let’s briefly see another important example application of the degree bound:
the elementary symmetric polynomials. We define the elementary symmetric poly-
nomials {σ j : j ∈ [n]} as:

σ1(x1, . . . , xn) = x1+ . . .+ xn

σ2(x1, . . . , xn) =
∑

1≤i< j≤n

xi x j

...

σ j (x1, . . . , xn) =
∑

1≤i1<...<i j≤n

xi1
· · · xi j

...

σn(x1, . . . , xn) = x1 · · · xn

Corollary 1. S(σ1, . . . ,σn)≥ log(n!) =Ω(n log n)

I leave the proof of this corollary as an interesting exercise.
In 1983, Baur and Strassen proved a remarkable result that allows the application

of the degree bound to lower-bounding the complexity of single polynomials [4].
They proved that computing a polynomial f and all the partial derivatives of f
only incurs a constant factor blowup in the size of the required circuit versus just
computing f alone:
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Remark 3 (Baur-Strassen). For any f ∈C[x1, . . . , xn],

S( f ) =Ω
�

S( f ,
∂ f
∂ x1

, . . . ,
∂ f
∂ xn
)
�

Consider now the polynomial f (x1, . . . , xn) = x1
k + . . .+ xn

k . We have

S( f ) =Ω
�

S( f ,
∂ f
∂ x1

, . . . ,
∂ f
∂ xn
)
�

=Ω
�

S(k x1
k−1, . . . , k xn

k−1)
�

=Ω(n log k)

where the last equality follows from the degree bound. A subtler application
of the same technique yields S(σ j ) =Ω(n logmin( j , n− j )). Both this bound and
the bound on f are tight up to constant factors.

At this point I would like to emphasize again that the degree bound remains
the state of the art 45 years after Strassen proved it. Nobody knows how to prove a
lower bound better than Ω(n log n) on a polynomial of degree O(n), even though
it can be shown that most polynomials have complexity that isn’t even polynomial
in n [3].

1.3 Other proofs of the degree bound

Even though improving on the degree bound appears to be beyond the reach of
the field at the moment, several researchers over the years have found new proofs
of the classic result.

Notably, in 1976, Schönhage derived with elementary means a lemma on
algebraic dependence, and used this lemma to prove the degree bound without
relying on any theorems from algebraic geometry such as Bezout’s theorem [5].

Later, in 1996, Smolensky [6] provided a different elementary proof of the
degree bound for the special case x1

k , . . . , xn
k by giving a reduction from arithmetic

circuits to a novel circuit model invented specifically for this proof.
Most relevant to this paper is the recent proof by Kumar in 2017 for the

case x1
k + . . .+ xn

k for homogeneous circuits, not all arithmetic circuits [7]. A
homogeneous polynomial is a polynomial in which each term has the same degree.
Homogeneous polynomials are quite common in algebraic computation; all the
examples I’ve used of polynomials have been homogeneous. A homogeneous circuit
is an arithmetic circuit in which [v] is homogeneous for every vertex v. An
equivalent definition is that a homogeneous circuit is an arithmetic circuit for
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which the two predecessor polynomials of any plus gate must have the same
degree. Kumar’s paper mainly deals with proving a new lower bound for algebraic
branching programs, another model of algebraic computation, but it mentions
without a full proof that its methods can be extended to arithmetic circuits. While
I didn’t know about this paper until this thesis was almost completed, its methods
are in fact very similar to mine. My main result won’t just cover the special case
x1

k+. . .+xn
k , and my proof uses different language than Kumar’s, but both proofs

are quite similar. It is my hope that my exposition can make it even clearer how the
case of homogeneous circuits is fruitful to methods rather different from those of
Strassen (and Schönhage, and Smolensky). Moreover, my proof will involve a new
lemma (Lemma 1) that sheds light on the structural properties of homogeneous
arithmetic circuits.

1.4 Main result

A few algebraic (but not algebraic geometric) definitions are in order before my
theorem can be properly stated.

An ideal I of the polynomial ring R= F[x1, . . . , xn] is a subset of R that is a
group under addition and satisfies f h ∈ I for all f ∈ I , h ∈ R. The ideal generated
by the polynomials f1, . . . , fk , is defined as {h1 f1+ . . .+ hn fn : h1, . . . , hn ∈ R} and
is denoted by ( f1, . . . , fk). Note that ( f1, . . . , fk) is the smallest ideal containing
f1, . . . , fk .

An ideal I is proper if I ( R.
A proper ideal I is prime if, for any f , h ∈ R, whenever f h ∈ R then either

f ∈ R or h ∈ R.
The codimension (also called the height) of a prime ideal I is the length of the

longest chain8 of prime ideals leading up to I [8]. By this I mean that codim I
is the length k of the largest sequence of prime ideals I1, . . . , Ik over R such that
I1 ( . . .( Ik = I . In general, the codimension of any proper ideal I is defined as the
smallest codimension of any prime ideal containing I . Interestingly, connecting
back to the discussion of algebraic geometry, it turns out that codim( f1, . . . , fk) =
n− dimV ( f1, . . . , fk ).

8For the existence of a longest chain I am relying on the fact that any polynomial ring is Noethe-
rian, which is a consequence of Hilbert’s basis theorem.
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There’s one last notation to introduce: SH ( f1, . . . , fk ) is the size of the smallest
homogeneous arithmetic circuit computing f1, . . . , fk . We are now ready to see the
main result.

Theorem 3 (Main theorem). If f1, . . . , fk are homogeneous polynomials each of degree
≥D = 2d , and codim( f1, . . . , fk )≥ r , then SH ( f1, . . . , fn)≥ r d .

Proof sketch. The full proof is in Section 2, but I can sketch the basic idea before-
hand. Essentially, for any circuit C computing f1, . . . , fk , we partition C into d
levels: the vertices computing polynomials with degree in [2d−1, 2d ), those with
degree in [2d−2, 2d−1), and so on, all the way down to those with degree in [1,2).
We will prove that the polynomials computed by the vertices in any level ‘span
the space’ of the polynomials computed in all the higher levels (to be precise, we’ll
look at the ideals generated by these polynomials). Because we are given that the
polynomials in the highest level ‘span a big space’ (i.e., generate an ideal with
co-dimension at least r ), this will imply that each of the lower levels will also need
to span this big space and thus have lots of vertices (r vertices each, to be precise).
C must therefore contain at least r d vertices.

2 Proof of the main theorem

2.1 A few more preliminaries

Before I give the full proof, there are a few more facts it will be helpful to have in
hand.

First of all, note the somewhat trivial fact that if I ⊂ J , then codim I ≤ codim J .
This will come in handy.

The second fact is the only outside theorem I need for my proof. It is (the gener-
alized version of) Krull’s principal ideal theorem, a classic result from commutative
algebra.

Theorem 4 (General form of Krull’s principal ideal theorem). If R is a Noetherian
ring (so, for example, if it is any polynomial ring over a field), and h1, . . . , hr ∈ R, then

codim (h1, . . . , hr )≤ r

as long as (h1, . . . , hr ) is a proper ideal.
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A proof of the theorem can be found in pretty much any primer on commuta-
tive algebra, such as [8].

We can use Krull’s principal ideal theorem to help answer a simple question:
what is the codimension of (x1, . . . , xn)? Well, it is easy to see that the ideals
(x1), (x1, x2), . . . , (x1, . . . , xn) are all prime, so codim(x1, . . . , xn) ≥ n. By Krull’s
principal ideal theorem, codim(x1, . . . , xn)≤ n, so codim(x1, . . . , xn) = n.

For our setting, it will be particularly useful that if an ideal is generated by
homogeneous polynomials of degree ≥ 1, then it is proper. This fact can be easily
verified.

One more thing: For brevity of presentation, if V is a set of vertices in an
arithmetic circuit, let (V ) := ({[v] : v ∈V }).

2.2 Full proof

Lemma 1. Given d ≥ 1 and a homogeneous circuit C , let U1 be the set of vertices
in C computing polynomials of degree ≥ 2d and let U2 be the set of vertices in C
computing polynomials of degree in [2d−1, 2d ). Then (U1)⊂ (U2).

Proof. It is sufficient to show that for any individual vertex v with deg[v]≥ 2d , it
is true that [v] ∈ (U2). To prove this, it is helpful to use the fact that the vertices of
any directed acyclic graph (such as C ) can be topologically ordered (given a labeling
v1, . . . , vS(C )) such that all edges respect the ordering: for any i , j ∈ [S(C )], if i < j
then there is no edge from v j to vi .

Let m be the lowest index such that deg[vm]≥ 2d . For every i ≥ m, vi ∈U1.
The proof will be by strong induction on the index i of the sorted vertices.

The base case is when i = m. vi cannot be a plus gate because if it were, the
polynomials computed by its predecessors would have the same degree as [v],
which is impossible by definition of m. It also can’t be an input vertex because
deg[v] ≥ 2. Thus, vi is a product gate. The degrees of its two predecessors
add up to deg[v], so at least one of its predecessors–call it u–must have degree
≥ deg[v]/2≥ 2d−1. We also know by definition of m that deg[u]< 2d , so u ∈U2.
[vm] is the product of [u] with some other polynomial, so [vm] ∈ ([u]) ∈ (U2).

Now, for the induction step, we want to prove [v j ] ∈ (U2) given that [vi ] ∈ (U2)
for all m ≤ i < j . If v j is a plus gate, it is in the ideal generated by its two
predecessors, which have degree deg[v j ] and thus have indices in [m, j ), implying
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they are in (U2). Thus, in this case, v j ∈ (U2). If v j is a product gate, as above
one of its predecessors must have degree ≥ 2d−1, and [v j ] is generated by this
predecessor, so again v j ∈ (U2), and we are done.

As an aside, it follows easily from this lemma that if we fix the value of every
vertex in U2 to 0, then all the vertices in U1 will evaluate to 0.

Theorem 3 (Main theorem). If f1, . . . , fk are homogeneous polynomials each of degree
≥D = 2d , and codim( f1, . . . , fk )≥ r , then SH ( f1, . . . , fn)≥ r d .

Proof. The proof is by induction on d .
If d = 0, then the bound trivially holds.
Now suppose we know the statement is true whenever d = s − 1, and we want

to prove it for d = s . In other words, we need to prove that if a homogeneous
circuit C computes a collection of polynomials f1, . . . , fk that satisfies deg fi ≥ 2s

for all i and codim ( f1, . . . , fk )≥ r , then S(C )≥ r s . In order to prove this, we need
only show that there exists a set of vertices W in C such that 2s−1 ≤ deg [w]< 2s

for all w ∈W and codim(W )≥ r . Because C is homogeneous, directed edges in C
never point in the direction of lower degree, so the portion of C leading up to W is
completely disjoint from Out. This implies S(C )≥ |Out|+ SH (W ). Furthermore,
|Out| ≥ r by Krull’s principal ideal theorem and SH (W )≥ r (s−1) by the induction
hypothesis, so S(C )≥ r + r (s − 1) = r s . Hence, once we demonstrate W exists
we will be done. And we can do this by applying Lemma 1, by which there
must exist a set of vertices W such that 2s−1 ≤ deg[w] < 2s for all w ∈W , and
( f1, . . . , fk)⊂ (W ). This last condition implies codimW ≥ codim ( f1, . . . , fk )≥ r ,
so the proof is complete.

Corollary 2.
SH (x1

k , . . . , xn
k )≥ n log k

Proof. In order to apply Theorem 3 and conclude the result, we only need to show
that codim (x1

k , . . . , xn
k ) = n. If we are working over the field C, then the easiest

way to do this is through the equivalent claim that dimV (x1
k , . . . , xn

k ) = 0, which
is true because V (x1

k , . . . , xn
k) = {0}. But we can prove codim (x1

k , . . . , xn
k ) =

n for general fields using just the definition of codimension, not any algebraic
geometry, as follows.
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First, we compute the smallest prime ideal I containing (x1
k , . . . , xn

k ), because
by definition codim(x1

k , . . . , xn
k) = codim I . Since x1

k = x1 · x1
k−1 ∈ I , then by

the definition of prime ideals, if x1 /∈ I then x1
k−1 ∈ I . And x1

k−1 = x1 · x1
k−2, so

if x1 /∈ I then x1
k−2 ∈ I . We can continue inducting in this manner to show that

if x1 /∈ I then x1 ∈ I , a contradiction, so it must be true that x1 ∈ I . The same
argument implies x2 ∈ I , . . . , xn ∈ I . Thus, (x1, . . . , xn) ∈ I . (x1, . . . , xn) is prime
because if f ∈ (x1, . . . , xn) then deg f > 0, so for any f1, f2 such that f1 f2 = f it
is true that either f1 or f2 has positive degree and so is also in (x1, . . . , xn). Thus,
I = (x1, . . . , xn). We proved earlier that codim(x1, . . . , xn) = n, so we are done.

Corollary 3. SH (σ1, . . . ,σn) =Ω(n log n)

Proof. SH (σ1, . . . ,σn) ≥ SH (σn/2+1, . . . ,σn). And for n/2 ≤ j ≤ n, degσ j = j ≥
n/2. In order to apply Theorem 3, we must show codim(σn/2+1, . . . ,σn) ≥ n/2.
Let I be a prime ideal containing (σn/2+1, . . . ,σn). Since I contains σn = x1 · · · xn ,
if it doesn’t contain x1 then it must contain x2 · · · xn . If the latter is true, then if it
doesn’t contain x2 it must contain x3 · · · xn . We can continue this line of reasoning
to determine that I must contain xi for some i . Suppose without loss of generality
that x1 ∈ I . Then, by the definition of an ideal, we can take σn−1, subtract out all
the terms with x1, and what remains, x2 · · · xn , must still be in I . From this we can
deduce as above without loss of generality that x2 ∈ I , and apply the same trick to
σn−2 and so on to eventually find that without loss of generality x1, . . . , xn/2 ∈ I .
codim(x1, . . . , xn/2) = n/2, so by Theorem 3:

SH (σn/2+1, . . . ,σn)≥
n
2

log
n
2
=Ω(n log n)

3 Conclusion

Kumar has already shown that the type of methods I use here to reprove Strassen’s
bound for the homogeneous case can be used to obtain new results about algebraic
branching programs. Perhaps these methods, especially Lemma 1, can find further
applications for other problems and models of computation.

Moreover, Strassen’s original proof and Schönhage’s proof only established
the degree bound directly for infinite fields (the same applies for Kumar’s proof,
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because it uses algebraic geometric techniques). My proof does not require that
the field be infinite.

While my proof is more general in this respect, it relies on at least three prop-
erties of homogeneous circuits not shared by other arithmetic circuits:

• In a homogeneous circuit, if u is a predecessor of v, then deg[u] is never
greater than deg[v].

• In a homogeneous circuit, both the predecessors of a plus gate v compute
polynomials with the same degree as [v].

• Finally, it is crucial that any ideal generated by homogeneous polynomials
of degree ≥ 1 is proper (in other words, it doesn’t include 1).
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